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Foreword

Often times, we celebrate people at the end of their scientific career, when we
look back at their accomplishments. The occasion for this book is different. It
is a pleasure, in this case, to celebrate someone who has pioneered scientific
developments in artificial intelligence and has served the scientific community
with great energy, and who will certainly remain active in research for many
years to come. This book is dedicated to Luigia Carlucci Aiello, better known as
Gigina. The Festschrift makes its appearance exactly 50 years after the “official”
birth of artificial intelligence (at the historical Dartmouth Conference) at the
same time as a similarly round birthday for Gigina.

At Dartmouth College, the initial program for AI was set up by John Mc-
Carthy, Marvin Minsky, Herbert Simon and a few others. Alan Turing had been
dead only a few years and the brightness of the English mathematician’s ideas
about computational intelligence was still lingering. The Dartmouth Conference
set the scene for exciting research activity in this new field. Even though, at
times, the results turned out remarkably different from the initial expectations,
the field of AI expanded, adapting to the changing world and continues to flour-
ish today. One of the most emblematic stories of AI is computer chess.

The ambition of being able to compete with the best chess players has been
one of the original challenges that have characterized artificial intelligence. At
the time of the Dartmouth Conference, in 1956, the belief existed that within
some ten years, it would be possible to realize a program that would prevail over
the best human players. The truth is that at the beginning of the 1990s, this
goal was far from being achieved– the best chess programs were not at the level
of the 100th best human chess player.

Later, IBM invested enormously in a special project that led to the develop-
ment of Deep Thought, first, and then of Deep Blue. Deep Blue was based on
special hardware and substantially exploited brute force, with its capability of
exploring 200 million moves per second. The system, after a first failed challenge,
succeeded in 1997 in overcoming Garry Kasparov, generally considered the best
human chess player of all time. Kasparov left the game site furious, claiming
that the operators of Deep Blue had cheated, for instance by contravening the
agreements about operating the computer between games. In any case, he never
accepted the result. Nonetheless, IBM declared victory, and Deep Blue never
played again. The results of Deep Blue formed the basis of a number of other
practical projects that IBM sustained in the following years. Even though Deep
Blue was not known to have incorporated aspects that are typical of human
intelligence, the AI community took advantage of the result and declared that
one of the best known goals of AI, put forward by the founders of the discipline,
had been attained.
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1997 marked a milestone, but it was not the end of the story. The follow-
ing years saw the development of a new generation of programs, running on
traditional hardware (powerful PCs), but based on strategies that come closer
to those used by humans, including pattern matching, machine learning, oppo-
nent modeling, reasoning and planning. In general the new programs, like Deep
Junior (world champion in 2006), Shredder, or Zappa, are specifically built for
competing at the world championship of computer programs. Yet in 2003, Deep
Junior challenged Garry Kasparov, with a tie as the final result. However, this
time Kasparov declared himself satisfied with a tie result, and clearly played
the final two games on the defensive, impressed by Junior’s capability to change
strategies in the course of the game. Kasparov seemed to recognize that the
future of “chess intelligence” had been declared.

Critics of artificial intelligence have often condemned it for philosophical rea-
sons, ethical reasons and technical reasons. We will not discuss this issue here.
Let us just say that in the practical world artificial intelligence has produced
many positive results. They may not always appear so clearly because of a
paradox: AI is often considered the computer science of the future and, as a
consequence, whenever there are practical results, they cannot be attributed to
artificial intelligence.

Gigina was born in Fabriano, Marche, a remarkably beautiful region of central
Italy, full of historical and artistic monuments that form the casual backdrop for
everyday life. Fabriano is famous for its paper industry (there, Gigina and her
collaborators must have learned about “paper” production).

After high school she moved to Pisa, where she studied mathematics at the
Scuola Normale Superiore with some renowned Italian mathematicians, such as
Ennio de Giorgi. At that time, she fell in love doubly: with the theory of com-
putation and with her husband Mario Aiello, an outstanding computer scientist.
With him and with other Pisa friends, including Giuseppe Attardi, and Gian-
franco Prini she published various brilliant works. At the time, Pisa was the rec-
ognized center of computer science research in Italy. In that environment a whole
group of young scientists at the Istituto per l’Elaborazione dell’Informazione (In-
stitute for Information Processing) of the National Council for Research began
to develop research in artificial intelligence: these include, among others, Ugo
Montanari, Giorgio Levi, Franco Sirovich, Alberto Martelli and Franco Turini.
Several important papers that appeared in the Artificial Intelligence Journal
were produced in Pisa at that time. Gigina became a protagonist in the AI
scene. In Italy, the scene also included Marco Somalvico and his robotics group
at Milan Polytechnic, and, very soon research activity in AI started in Turin
and in various major universities. When their son Marco was still a small child,
Gigina had to cope with a personal tragedy: the loss of her husband Mario. Sub-
sequently, she decided to move to the United States, to work at Stanford for a
few years, in a research environment inspired mainly by John McCarthy. When
she came back to Italy she soon took the position of full professor in Ancona,
certainly one of the youngest full professors (and female professors!) in Italy.
From there she moved to University La Sapienza in Rome, where she taught
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and established a group including a large number of well-known AI scientists,
and where she teaches artificial intelligence now. For two years she also directed
IRST in Trento, a major research center in AI, Microsystems and Surfaces.

In the Italian AI research scene in the late 1970s and early 1980s, there were
several universities active in AI: Pisa, Rome, Turin, Genova, Milan, Padova,
Udine, Brescia, Florence, Bologna, Napoli, Bari, and Palermo. Within the Na-
tional Council of Research, Istituto per l’Elaborazione dell’Informazione and
Istituto di Linguistica Computazionale in Pisa, and Istituto di Psicologia in
Rome were also major players. Industrial research was also active, at CSELT
in Turin, at Tecsiel and Olivetti, plus at a number of smaller companies. An
interest group on AI was established within the Italian Association for Com-
puter science (AICA) in those years. In the mid-1980s, IRST was established in
Trento as an important institute devoted mainly to AI. In 1987, thanks to the
effort of Marco Somalvico, the major AI conference–IJCAI–was held in Milan. In
1988, the Italian Association for Artificial Intelligence (AI*IA) was established
and Gigina was appointed its first President. The Association has brought about
a notable set of activities, including a good-quality biennial conference in odd
years, a convention in even years, a number of workhops organized by special
interest groups and a magazine. The first conference, held in Trento in 1989,
had almost 300 participants. AI*IA has become a serious enterprise and AI has
received continuous attention in Italy since.

In the meanwhile, the European organizational scene was set between the 1970s
and 1980s. Wolfgang Bibel and others worked on establishing a European AI soci-
ety. At the Amsterdam AISB conference, the European Coordination Committee
for Artificial Intelligence was established as an umbrella organization whose mem-
bers are national AI societies. AICA was among the first, and was later replaced
by the novel AI*IA. It was also decided to hold the first European Conference for
Artificial Intelligence in Orsay in 1982, the first (even if recorded as “Fifth” to take
into account the previous events within AISB) of an ongoing series of important
biennial conferences. Bibel was elected the first ECCAI Chair, and further national
AI societies including several in the Eastern Block were initiated. ECCAI also es-
tablished various activities including committees for advising the European Com-
mission. Gigina was among the few key figures in these developments.

Outside Europe, for many years Gigina has been a major actor in the two
main international scientific forums of artificial intelligence: IJCAI, as General
Chair of IJCAI 1999 in Stockholm, Chair of the Trustees, and on the editorial
board of the Artificial Intelligence Journal, where she has collaborated to steer
the development of the field.

Luigia Carlucci Aiello’s research activities have addressed a wide range of top-
ics. Her first interests back in the early 1970s were in the field of pattern recogni-
tion. Soon after, she shifted into programming language semantics, program prop-
erties and their automatic proofs. She defined a semantics for PASCAL in LCF
(Logic for Computable Functions) and machine checked several proofs of (non-
trivial) properties. She designed and implemented a theorem prover named PPC
(Pisa Proof Checker), published papers describing the (object-oriented) program-
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Luigia Carlucci Aiello

ming paradigm used in its development, and its evaluator (an interpreter for the
full lambda calculus), and participated and contributed to the development and
use of Wehyrauch’s FOL system. At the same time, she has investigated the ad-
vantages of using meta-level knowledge in AI systems, both to control search and
to reason in multi-agent systems. She was involved in the first experiments in Italy
on the application of artificial intelligence techniques to the development of expert
systems for medical diagnosis and of intelligent tutoring systems. Since at least
1990, she has been active in the field of nonmonotonic reasoning, where her inter-
ests have spanned from the characterization of default proofs, to tableau systems
for default logic, to modal characterizations of default logic and definability of con-
cepts of natural kinds. Her latest research activity has been in the fields of cognitive
robotics, AI techniques applied to security, and AI planning.

In launching this Festschrift initiative, we have involved a number of people
who have worked in research with Gigina, or have been her students, who have
then embarked on an important path of their own. Others have shared with
Gigina a leading role in the strategic service of the AI community, internationally
or as presidents of the Italian Association for Artificial Intelligence.

AlbertoMartelli, EugenioOmodeo andFrancoTurini are some of the colleagues
and friends that worked together with Gigina in that magic period in Pisa.
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Gigina with the students of the first AI course she taught in Rome in 1992

Marco Cadoli, Alessandro Micarelli, Daniele Nardi, Fiora Pirri (and Marco
Schaerf) are representatives of the large group of AI scientists who have taken
the first steps (and often many subsequent steps) with Gigina in Rome.

Pietro Torasso, Roberto Serra, Marco Gori and Marco Schaerf have all fol-
lowed Gigina as AI*IA Presidents (as has Oliviero Stock, who was also a student
of a very young Gigina in Pisa).

Wolfgang Bibel, Alan Bundy, Robert Kowalski, Erik Sandewall, Jrg Siek-
mann, and Wolfgang Wahlster are certainly among the small group of the most
influential scientists in AI. They share with Gigina a passion for reasoning and
logic, and have been essential parts of her intellectual milieu. Most of them have
worked with her in leading positions in the international AI community, in ECAI,
IJCAI Inc. or the AI Journal.

Paolo Traverso worked with Gigina during her period as IRST director. And
last but not least, Roberto Cordeschi, a friend of Gigina’s and an AI historian,
especially in recent times has helped understand the initial years of AI, the
period before Gigina’s intervention.

This collection is a detailed insight into many aspects of AI and the relation-
ship between theoretical and applied research.

The first set of papers is dedicated to the foundations of AI.
The paper by Roberto Cordeschi, “Searching in a Maze and in Search of

Knowledge: Issues in Early Artificial Intelligence” gives an account of the origins
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of heuristic programming and the shift to knowledge-based or real-life problem
solving that followed the initial days of AI.

Wolfgang Bibel in his “Research Perspectives for Logic and Deduction” pro-
vides an authoritative manifesto for the role of logic and deduction within AI
or, better, within what he has called Intellectics.

Questions and techniques related to computational logic are the themes for
various subsequent chapters.

Jörg Siekmann et al.’s paper “Reductio ad Absurdum: Planning Proofs by
Contradiction” addresses the questions: how can we proof plan an argument by
reduction ad absurdum? When is it useful to do so? What are the methods and
decisions involved?

In “Computational Logic in an Object-Oriented World,” Bob Kowalski investi-
gates transformations between object-oriented and abductive logic programming
systems and argues that ALP multi-agent systems can combine the advantages of
logic with the main benefits of object orientation.

In “Best-First Rippling,” Alan Bundy and colleagues address the limitations
of rewriting systems based on continuous incremental reduction of differences
between formulae by introducing a more flexible and efficient best-first technique.

Marco Cadoli and Marco Schaerf’s “Partial Solutions with Unique Comple-
tion” looks at the computational complexity of several reasoning problems, their
formulation by means of quantified Boolean formulae and their solution through
an appropriate solver.

In “The Computerized Referee,” Eugenio G. Omodeo and colleagues present
a system that either certifies a text as constituting a valid sequence of defini-
tions and theorems, or rejects it as defective, and they discuss a series of new
enhancements to the system.

Other general themes are the subjects of the subsequent two papers.
In the paper “About Implicit and Explicit Shape Representation” Fiora Pirri

addresses a different topic: the analysis of shape and form as the basic features for
understanding the relation between images, offering a novel approach to shape
approximation and similarity measures and their use.

In “Agents, Equations and All That: On the Role of Agents in Understanding
Complex Systems,” Roberto Serra and Marco Villani offer a different perspective
on a familiar matter; they show how differential equations can describe interac-
tions among agents and point out that the capabilities of the former are broader
than is often assumed.

The theme of intelligent robotics is prominent in the set of papers that follow.
In “Coordination of Actions in an Autonomous Robotic System”, Erik Sande-

wall describes the design and formal characterization of a cognitive process,
called an action coordinator, that manages restrictions in real-world actions.

Robots in soccer is a very popular theme and could not be passed up in this
collection. In “AI and RoboCup”, Daniele Nardi and Luca Iocchi provide an
AI research perspective on RoboCup, based on the experience accumulated in
several years of RoboCup activity.
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“Planning Under Uncertainty and Its Applications” by Paolo Traverso is on a
theme that bridges between robotics and several other areas. Traverso discusses
solutions to the problem of actions that may have different effects that cannot
be predicted at planning time and some applications in different domains.

The subsequent set of chapters is dedicated to AI and the Web.
In “Reasoning About Web Services in a Temporal Action Logic” Laura Gior-

dano and Alberto Martelli present an approach to reasoning about Web services,
described by specifying their interaction protocols in an action theory based on
a dynamic linear time temporal logic.

Alessandro Micarelli and colleagues in “Intelligent Search for the Internet”
approach the key theme of personalization and adaptation of human–computer
interaction to overcome information overload, by means of machine learning
techniques and AI-based information representations.

The history of artificial intelligence has seen many attempts to compete with
humans at games.

In “Cracking Crosswords: The Computer Challenge”, Marco Gori and col-
leagues go further and tackle the cracking of crosswords and describe a system
which relies strongly on interaction with the Web for clue answering.

The subsequent two papers focus on techniques particularly relevant for spe-
cific classes of problems.

Pietro Torasso and Gianluca Torta in their “Model-Based Diagnosis Through
OBDD Compilation: A Complexity Analysis” address the problem of evaluating
the complexity of diagnostic problem solving, characterized by a potentially
exponential size of the search space, often circumvented by compilation of the
domain model.

In “Examples of Integration of Induction and Deduction in Knowledge Dis-
covery,” Franco Turini and colleagues investigate the use of classification trees
in two quite different application areas — business documents and geographic
information systems — complementing the use of induction from examples with
the exploitation of some form of deductive knowledge.

The final paper in this collection, “SharedLife: Towards Selective Sharing of
AugmentedPersonalMemories”byWolfgangWahlster andcolleagues, is concerned
with a very ambitious topic, namely, the building of an augmented personal mem-
ory from the recording of physical and communicative interaction of an individual
in an instrumented environment, and its use with the goal of supporting commu-
nication between individuals and learning from the experiences of others.

We wish to thank all authors for their enthusiastic participation; Sara Kauf-
man and Davide Micaletto for their help in producing a polished final version
of this book. Some of the best young scientists have grown close to Prof. Luigia
Carlucci Aiello and have been inspired by her continuously. May this tribute to
her be of inspiration to an even larger, new generation of AI scientists.

Oliviero Stock and Marco Schaerf
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“He possesses two of the three qualities for the ideal detective. He has the power
of observation and that of deduction. He is wanting only in knowledge. . . ”
Sherlock Holmes, in speaking of Franois de Villard, the French detective

Abstract. Heuristic programming was the first area in which AI meth-
ods were tested. The favourite case-studies were fairly simple toy-
problems, such as cryptarithmetic, games, such as checker or chess, and
formal problems, such as logic or geometry theorem-proving. These prob-
lems are well-defined, roughly speaking, at least in comparison to real-life
problems, and as such have played the role of Drosophila in early AI. In
this chapter I will investigate the origins of heuristic programming and
the shift to more knowledge-based and real-life problem solving.

1 Introduction

AI has been around for 50 years now:1956 was the year when the Dartmouth
meeting officially signalled the birth of AI. An anniversary like this is a fitting
occasion to take stock of the events of a half-century worth of research. We can
do so in at least two different ways: (i) we could map out possible future scenarios
on how AI will evolve, by a look at today’s most promising research programs
(and those less promising) – an evaluation that not all would agree with; or
(ii) we could revisit certain topics and theoretical issues, certain experimental
research and methodological controversies that were raised and developed in the
era of the Dartmouth pioneers, to think about how the evolution of AI has led
us to the point where it stands today.

In this chapter, I have chosen the second option. I aim to discuss some topics,
results and controversies which have characterised AI research in the fifteen or
so years following Dartmouth (1956-72 ca.). This was, indeed, a lively time in AI
– it was then that a large part of its scientific vocabulary came into existence.
As we shall see, some topics appear to have been given a systematic form during
this time, while others were put aside, to be brought to the fore again later, in
more mature contexts.

The topics I shall consider here include heuristic search and heuristic program-
ming (sections 2 and 3), problem representation (section 4), and the early ap-
proaches to knowledge representation, regarding both the nature of the problems
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faced and the different methods employed: toy problems and real-life problems
(section 5), and well-structured and ill-structured problems, weak and strong
methods (section 6). A conclusion follows in section 7, including a brief look
at the most recent developments in some of these areas. My aim is to suggest,
through these developments, how AI has not evolved along a linear path, nor
can its evolution be described through a succession of “paradigms”. All this
may prove to be instructive when considering the first alternative (i) mentioned
above.

2 From a “Mythical Being” to the Actual Decision Maker

Claude Shannon had already started to think about a computer chess program
around the mid-1940s. His sketch of the program was based on the idea that the
best move could be evaluated using a look-ahead analysis of alternative moves
based on the minimax procedure (see [50]). This procedure had been the basis of
an earlier chess program hand-simulated by Alan Turing (Hodges [21] 213-214).
The origins of the minimax procedure lie in the early formulations of mathe-
matical game theory. The chess player was established as a common metaphor
in the analysis of decision making, with its classic formulation in Theory of
Games and Economic Behavior, published by von Neumann in 1944 together
with the economist Oskar Morgenster. In their terminology, chess is a zero-sum
game. In theory, this means imagining a perfectly rational player who applies
the minimax procedure to every possible move, assigning a value of +1 for a
victory, 0 for a stalemate and −1 for a loss. In practice, this optimal strat-
egy encounters an insurmountable difficulty owing to the combinatorial explo-
sion of possible moves, which Shannon calculated to be to the order of 10120.
The best comment on this situation came from von Neumann and Morgenstern
themselves:

This relative, human difficulty necessitates the use of those incomplete, heuris-
tic methods of playing, which constitute “good” chess, and without this human
difficulty there would be no element of “struggle” and “surprise” in this game
(von Neumann and Morgenstern, [35] 125).

This is the difficulty that Norbert Wiener seems to have had in mind when in
the first edition of Cybernetics in 1948, he suggested building a machine which,
without playing “an optimum game in the sense of von Neumann”, would in any
case be able “to [...] offer interesting opposition to a player at some of the many
levels at which human chess players find themselves” (see [62] pp. 164-65).

Thus, when Shannon took on the problem of programming a procedure based
on the minimax algorithm, he could not avoid the problem of how “to develop a
tolerably good strategy for selecting the move to be made” (see [50], p. 260). He
suggested the program should have in-built selectivity criteria taken from the
Dutch psychologist Adrian de Groot’s investigations into the choice processes of
chess masters who made their analyses by “thinking-aloud” during the game.

In those years it was the choice-making processes themselves which came un-
der the scrutiny of one pioneer of organisation theory and Operations Research
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(OR), Herbert Simon (von Neumann and Morgenstern’s quotation above is bor-
rowed from a paper by Simon). Elsewhere I have discussed in some detail how
placing these decision-making processes at the centre means there is a shift of
interest in disciplines dedicated to studying decision-making behaviour – a shift
which includes a renunciation of the normative approach of mathematical game
theory, and a move to the study of actual choice processes (see [11]). Briefly,
the normative approach consists of an analysis of the choices (or strategies) that
the rational agent should adopt to arrive at the optimal solution to a problem.
Simon shifted his focus to the choice (or strategy) that agents normally make,
since they are conditioned by their (subjective) idea of the task domain. Only
in this case was the analysis of choice processes placed at the forefront, partic-
ularly, how they are conditioned by how the agent perceives or represents the
task domain.

In making this non normative point of view his own, Simon concluded a line of
research begun in the 1940s, and contradicted the model of the Homo oeconomi-
cus, whose decision-making behaviour is guided by the principle of maximising
utility – which had been the assumption in game theory and OR (more on this
in section 4). Simon studied the agent, or problem solver, not as someone pos-
sessing ideal, omniscient rationality, but in terms of somebody with limited or
“bounded rationality”1. The chess player metaphor again came to the fore, but
no longer within the profile of “unlimited intellect” (as Shannon called it), or the
“entirely mythical being” (as Simon would call it) of classic economics. Indeed,
already in 1952 Simon formulated the hypothesis of a chess-game program whose
base was not crucially the minimax algorithm and static evaluation function in
Shannon’s sense, but rather the notion of “satisficing” choice (see [51]).

Simon’s contribution to AI’s birth at the 1956 Dartmouth meeting, as well
as that of other fathers of the new discipline, has been pointed out many times.
Here I will focus on how he and other AI pioneers handled two issues that
proved immediately crucial in building the first intelligent programs: control and
representation. Both involve the question I mentioned above, which comes up
immediately when building a program endowed with the features of the problem
solver as a rational agent – the question of the combinatorial explosion of the
possible alternatives to be evaluated before making a decision. This was the
problem Shannon considered in chess – how to supply the program with selective
strategies aimed at freeing chess programming from the impression of its being
based on “brute force” rather than on a fairly expert analysis of the sequence of
moves.

Simon’s proposal found a place in the problem of how to control the combi-
natorial explosion of alternatives. He suggested starting from von Neumann and
Morgenstern’s “relative, human difficulty” to study the “heuristic” strategies
which, since elaborated by agents with bounded rationality but notable flexibil-
ity (i.e. human beings), use elements of “struggle” and “surprise” rather than

1 See [26] ch. 1, for an introduction,, and see [11] and [12] on the influence of Simon’s
theory of decision making on early AI. Kahneman and Frederick [22] discuss the
relationship between Simon’s theory and the explanation of “cognitive illusions”.
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brute force. The aforementioned theory of choice put forward by Simon was
influential in the construction of some of the now historic computer programs
based on different heuristic strategies, which are among the first examples of
what became known in AI as heuristic programming: the LT (Logic Theorist),
the GPS (General Problem Solver) and some versions of chess programs, all of
which came from Simon’s work with Allen Newell and Clifford Shaw from the
mid-1950s.

These programs “maximally confuse [...] with mutual benefit” the goal of
limiting the combinatorial explosion using heuristic strategies and the goal of
modelling or simulating by computer the cognitive processes used by human
problem solvers (Newell and Simon [39] 279). Nevertheless, cognitive simulation
remained the main goal of these programs, and was absent from other programs
of the time, where the aim was rather to implement highly efficient selective,
or heuristic, strategies. The most famous example is Arthur Samuel’s checker
programs. Starting in 1952, they were (from 1954 on) endowed with learning
algorithms which made them milestones in machine learning.

These two aims, the synthesis and the modelling or simulation of human
intelligence, immediately defined two distinct areas of research in AI. Minsky
pointed this out at MIT in 1961, in the presentation of a version of GPS by
Simon. He and Simon agreed on the fact that the aim of the modelling approach
was “to understand how humans think”, according to Newell, Shaw and Simon’s
IPP (Information Processing Psychology) program (later merging into Cognitive
Science). Meanwhile the other approach (that Minsky adhered to) aimed at
obtaining “good problem-solving programs”, and according to Minsky, the two
approaches were opposed to the neural net and self-organizing system approach.
Notice that at the 1958 Teddington Symposium Minsky had already labelled
“heuristic programming” as the main task of newly-born AI, openly positioning
it against the neural net approach which he judged inefficient2. This was a widely
held opinion at the time, and Samuel ([48] 207) also distinguished “two general
approaches to the problem of machine learning”. The first, “which might be
called the Neural-Net Approach”, was considered promising by Samuel, but at
the time inefficient and not realizable. The second approach was the computer
programming of learning – “much more efficient” and “capable of realization at
present”3.

2 See [10] on both these events.
3 Samuel’s programs were the main attempts to deal with learning during the period

I am considering here – to some extent, they were an exception. Learning had been
a central topic during Cybernetics, and continued to be investigated in the neu-
ral net and self-organising system community (think to James Anderson, Eduardo
Caianiello, Teuvo Kohonen and so forth). AI researchers interested in computer
programming were more concerned with efficient performance and the mechanisms
responsible for this (such as heuristic search and knowledge representation) than
with learning. It was during the late 1970s that learning come to the forefront, for
example with the AM and EURISKO programs (see section 7). Starting from 1983,
the Machine Learning collection, edited by Ryszard S. Michalski, Jaime G. Carbonell
and others, documented AI investigations on learning.
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Heuristic programming then became the basis of the “heuristic search para-
digm”, to use the expressionused in 1968 byEdwardFeigenbaumto characteriseAI
of the previous decade (see [15]). By such an expression Feigenbaum was referring
to the earlier AI programs based on heuristic procedures. These were often very
different from each other, not only in the specific methods adopted, but also the
terminology used – terminology which started developing from circa 1955. Some
years after Feigenbaum’s review, the book by Nilsson [44] became the first, highly
influential systematic treatment of the subject. In the next two sections I shall look
briefly at certain topics and controversial issues leading to the formation of a vocab-
ulary of AI in relation to the issues of heuristic search and problem representation.

3 Searching in a Maze

In the pioneering years of heuristics programming the search for a solution to a
problem was studied mainly using a representation adaptable to the problems
considered by early AI, i.e. puzzles, toy problems and games: the tree-shaped
representation. To some extent, the idea behind this type of representation came
from game theory and psychology – psychologists had often described the activity
of problem solving, both human and animal, as a solution of mazes. In this
case, too, the concepts and methods used by early AI overlapped with those of
psychology.

“Maze” or “problem maze” was the term used initially (and later abandoned)
by the founders of IPP as an equivalent of the game tree. In its turn, “problem
maze” was used as the equivalent to “problem space”, the term introduced by
the founders of IPP between 1956 and 1958 (see [43])4. As I said before, a
generic definition of “heuristics” was a method or procedure which would reduce
the combinatorial explosion of legal moves – moves occurring in the problem
space. In the beginning, there was a certain amount of unanimity in placing
a “heuristic” in opposition to an “algorithm”, which as opposed to a heuristic
guarantees the discovery of the solution, if indeed the solution exists. Later this
distinction was seen generally not to be as well founded as had been thought
back then, e.g., in the case of the resolution method in theorem proving and its
various “heuristics”5.

Coming back to trees, in the case of one-person games or even theorem prov-
ing, the search space took on the shape of a game tree. With two-person games
like chess, the game tree was different, since it consisted of the moves of two
players, and described a search space in which a player uses heuristic strategies
with the moves of the opponent in mind. This is an acquired distinction: the first
search space can be represented with an AND/OR graph, the second with an OR
graph. Yet in the very early stages of heuristic-programming terminology, the
4 But initially “‘space’ of possible solutions” and “subspace” were used – both identi-

fied by a strategy that limits the search (see [41]).
5 For details see [9]. As Simon put it, “from the beginning there was quite a bit of

confusion in the use of the term ’algorithm’ and ’heuristics’, a confusion to which
AI, Cliff and I certainly contributed” (1996, personal communication).
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distinction was not always made explicit. The term most used in both cases was
“problem space”, and sometimes it was used together with “maze”, as we have
seen. In turn, the problem space was sometimes described explicitly as a directed
graph: the graph of the sub-problems in problem decomposition, for example in
the GEOMETRY MACHINE, as described by Gelernter and Rochester [20].

What was defined as a problem space in these early years was later defined, on
one hand, as “state space” – described as a particular OR graph for one-person
games, i.e. a tree – and, on the other hand, as “search space” – generalising to
the case of AND/OR graphs, or “game trees” for two-person games (see, e.g., the
synthesis in [6]). And problem decomposition has often been considered, at least
since Nilsson [44], as a problem representation distinct from state space repre-
sentation, i.e. the “problem reduction representation”, that can be described as
an AND/OR graph.

Notice, however, that since the beginning Newell and Simon distinguished the
problem space from the task environment. Over time, both terms have taken on
marked cognitive connotations. This became clearer in the 1960s, with Newell
and Simon’s research on how human subjects solve different puzzles and toy
problems, first and foremost cryptarithmetic ones. The problem space in this
framework is something more than just a simple state space. There are differences
in the definitions given by the founders of IPP at different times, but they seem
to have become clearer in Human Problem Solving [40]. Briefly, I think one can
say that this is how things stand.

We start with a “laboratory” problem-solving situation. A problem is defined
objectively, i.e., from the point of view of the observer or experimenter, in a cer-
tain task environment, which is the sum of the facts of the world-for example, a
cryptarithmetic problem and the rules of the game. Once the problem has been
assigned to the subject, the latter constructs his own, subjective, inner repre-
sentation of the problem. The question now is the following: How do we define
and study this subject’s inner representation? The difficulty is that now, when
considering the state space, we have introduced the psychological dimension of
the problem solver (actually, the limits of the problem solver’s rationality). So
in this case we are interested not in the simple state space, which can be repre-
sented as a directed graph, i.e. a space which includes only legal moves – thus
alternative paths which include states generated by the application of legal rules.
The space we are interested in is the one which should represent the possible
alternatives considered by the subject to reach his goal, so not only the effective
ones, but also those hypothesised or imagined by the subject while he solves the
problem, his wishes, unfeasible trials, errors in applying the rules and so forth.

Strictly speaking all this activity takes place outside the simple state space.
Thus, if the experimenter intends to examine (e.g., via thinking-aloud protocols)
how the subject represents the task environment, the experimenter cannot simply
limit himself to examining the alternatives within the state space. This, which
we can attribute as an object of study of AI, corresponds to what Newell and
Simon defined as a “basic problem space”, i.e. the space consisting of the set of
states generated by all legal moves (see [54] p. 276, and [40] pp. 665-67, where
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Newell and Simon deal with the basic state space in different task environments
of logic, of one-person toy problems and two-person games). On the other hand,
compared to the basic problem space, the problem space is a notion augmented
by a consideration of the psychological aspects of the human solver. As such, the
problem space is not so much the object of study of AI but rather of IPP, and
it is thus introduced and defined:

We [...] find it necessary to describe not only [a human subject’s] actual be-
haviors, but the set of possible behaviors from which these are drawn; and not
only his overt behaviors, but also the behaviors he considers in his thinking
that don’t correspond to possible overt behaviors. In sum, we need to describe
the space in which his problem solving activities take place. We will call it the
problem space. This is not a space that can yet be pointed to and described as
an objective fact for a human subject. An attempt at describing it amounts,
again, to constructing a representation of the task environment – the subject’s
representation in this case. The subject in an experiment is presented with a
set of instructions and a sequence of stimuli. He must encode these problem
components – defining goals, rules, and other aspects of the situation – in some
kind of space that represents the initial situation presented to him, the desired
goal situation, various intermediate states imagined or experienced, as well as
any concepts he uses to describe these situations to himself (Newell and Simon
[40] 59).

The problem space considered in this way is the basis for constructing what
Newell and Simon called the “problem behavior graph”. This must include the
above mentioned idiosyncratic components of a subject, as they are taken from
thinking-aloud protocols. Finally, the problem behaviour graph is used to write
a simulation program, or computational model of the subject, in the form of a
production system. To conclude, it means building a “theory of the subject’s
thought processes” (p. 60) which is the object of study of IPP. From here stems
the insufficiency in limiting ourselves to the simple actual or overt behaviour of
the subject and, in computer simulation or modelling, to the state space. I have
discussed elsewhere which are the theoretical constructs used in this thought-
process theory and the controversial questions it has brought up (see [11]]). Here
I would like to look briefly at a notion at the centre of both this process theory
and AI: alternative space-representations.

4 Shifting in Problem Representation

The representation of the problem as a state space was most common in early
AI, since it was interested in the study of heuristic procedures of problem solving
within the “heuristic search paradigm”. It would be useful to go back to Newell’s
words when summing up the common features of early AI programs (these are
the ones I mentioned in previous sections, and are to be found along with others,
in the well-known collection edited by Feigenbaum and Feldman [17]):
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These programs are all rather similar in nature. [...] They all operate on for-
malized tasks, which although difficult, are not unstructured. All the programs
use the same conceptual approach: they interpret the problem as combinato-
rial, involving the discovery of the right sequence of operations out of a set
of possible sequences. All the programs generate some sort of tree of possi-
bilities to gradually explore the possible sequences. The set of all sequences
is much too large to generate and examine in toto, so that various devices,
called heuristics, are employed to narrow the range of possibilities to a set
that can be handled within the available limits of processing effort. Within
these bounds there is a good deal of variation among the programs as to the
particular heuristic devices used (Newell [36] 393-394).

I shall return later to the “unstructured” structure of tasks as opposed to
formalised ones – i.e. those relating to theorem proving, to games like checker or
chess, to toy problems such as cryptarithmetic and so forth (see section 6). For
now, we can agree that the fundamental ingredient of these earlier AI programs
was selective search in the state space, described as a directed graph (or as a
tree). As has been seen, the main aim was thus how (i.e. with which methods) to
make the search in more or less large state spaces efficient. Samuel, for example,
started by studying Shannon’s static evaluation function. But as has been shown,
since the static evaluation function may be wrong, “the minimax procedure no
longer serves its original purpose of defining and identifying a move that is
theoretically correct. Instead, minimaxing has itself become a heuristic for the
choice of move” (see [6] p. 98). Thus Samuel’s checker programs, which used this
“heuristic”, actually supplementing the minimax procedure, analysed hundreds
of possible continuations before choosing one. Yet, it was indeed the example of
the expert human solver-who usually, in this and other similar cases, analyses
only a few continuations6 – that directly inspired the first attempts at using
a different kind of heuristics, for example, those used in certain IPP programs
and in the GEOMETRY MACHINE. Some important notions began to emerge
with these programs, which broke away from the “efficient search on the basis
of analysing many moves” approach – first of all there is the notion of planning.
Let us look at how.

Planning already appeared in the earlier versions of GPS, presented not under
this name, but as a “revised version” of LT, between 1957 and 1958 (see [43]).
Planning, as described by the founders of IPP, consists of a procedure which al-
lows the program to formulate a possible solution to a problem in general terms
before working out the details. Such a procedure consists of abstracting certain
details of the original object and operators, formulating the corresponding prob-
lem in this abstract task environment, using the solution to the abstract problem
to provide a plan for solving the original problem, and, finally, translating the
plan to the original task environment and executing it. So, the plan is used for
finding cues in the maze representing the problem space, and should the out-
come be successful, the plan produces a “planning space”, which is simplified in
6 Remember, for example, de Groot’s experiments on chess players I mentioned earlier,

and which Newell, Shaw and Simon [43] refer to.
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comparison to the original problem space since it is narrower (Newell, Shaw and
Simon [42]). The idea of a planning space thus contains a procedure whereby the
problem is abstracted or simplified. The authors of the GEOMETRY MACHINE
took up the planning space idea again within their “suggestion space”, offered
by geometric diagrams, whose cues or “proof indications”, as they put it, are
transformed into the problem space (see [20] p. 336).

Notice that, at the 1958 Teddington Symposium, Minsky had already dealt
with the heuristic value both of planning as a method involving “simplifica-
tions [...] of the problem”, and of the use of diagrams or figures as “‘semantic’
models” aiding the search for the problem’s solution. In both cases the example
was geometry theorem proving (see [32] pp. 14-17)7. At the time, experiments
on planning were being carried out in logic theorem proving with “revised ver-
sions” of LT, and experiments on the use of figures in geometry theorem proving
with the GEOMETRY MACHINE. Thus, for different researchers heuristic pro-
gramming included problem solving methods which could not be reduced to
the simple tree-search strategy. This is particularly true concerning the use of
different alternative problem spaces.

These pioneering experiments aside, multiple problem-representation and the
possibility of shifting from one representation to another became the object of
systematic study in AI towards the mid-1960s. The goal remains of reducing the
combinatorial explosion in heuristic programming. The fact that for this goal a
good representation of the problem is no less important than a good selection
strategy is again suggested by observing the human problem solver at work.
The human’s capacity to reformulate a given problem in another representation
can drastically reduce the amount of searching needed to find the solution. The
classic example, even today (see, e.g., [45]), was formulated by John McCarthy
in 1964: the mutilated chess-board.

SaulAmarel first tookona systematic studyofmultiple problem-representation,
and the difficult problems of how to endow a program with the ability to shift from
one representation to another. In a great deal of, now classic, research, Amarel
showed how the choice of representation influences the efficiency of problem solv-
ing. A 1966 meeting on problem representation atCarnegie-Mellon Universitywith
the participation of Amarel was a step forward in understanding the question.
Newell [37] referred to this meeting in a discussion of different examples of multiple
problem representation, including the example discussed by Amarel of three dif-
ferent and differently efficient representations in theorem proving in propositional
calculus.

In Amarel’s research, probably the most famous example is the missionaries
and cannibals toy problem, for which he studied possible representational shifts.
He described six increasingly efficient representations of this puzzle, from his
verbal version to the one where the state space has a square matrix-like rep-
resentation, making the solution to the problem immediately visible (see [3]).

7 At the 1956 Dartmouth meeting, Minsky had already described a hand-simulated
program that proved the early theorems of Euclidean geometry. He spoke about this
at Teddington (see [32] p. 20).
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Notice that a form of planning was a fundamental ingredient in this represen-
tation. An abstract problem space was formed that enabled a “global view of
the situation” for the problem solver, with the result of better discovering the
“critical points” in the problem space that allowed an enormous reduction in the
search (see [4] p. 230).

This early research in the multiple representation-problem showed how dif-
ferent representations correspond to different ways for the problem solver to
consider the problem space – the problem statement, the operators and the
goal. With a computer program, a representation that moves efficiently towards
the solution corresponds to “having the right point of view”, as Amarel put it, or
“casting the problem in the appropriate form” – abilities recognised in problem
solvers by George Polya (see [2] p. 113).

As seen in the previous section, Nilsson [44] considered planning methods
to be the basis of problem solving representations different from state-space
representations (through OR graphs). He included planning methods within
problem-reduction representations (through AND/OR graphs). In contrast to
Nilsson, Simon considered it more useful to have a unified treatment of OR
graphs and AND/OR graph within the paradigm of a simple heuristic search
through a directed graph. Furthermore, he did not agree that planning meth-
ods were methods of problem representation which could be subsumed under
the paradigm of a simple heuristic search (see [52] p. 262). For Simon, planning
meant a partial departure from such a paradigm, even though the planning and
other cases he pointed out – like abstraction (which can be present in the plan-
ning method) and semantic models – were experimented on within this paradigm
from its very beginning. As we have seen, they were in fact the first examples
of representations to include the construction of alternative problem spaces and
their simultaneous exploration.

For Simon, when we consider a planning space it would be more correct to say
that information, rather than a solution to a problem is being sought. Thus, using
a multiple representation, such as planning, we have a process of information
accumulation or gathering, rather than a process of seeking the solution through
the usual “simple tree-search paradigm”. “The theory of heuristic search has
been usually formulated in terms of a search for a problem solution. It could be
generalized to refer to a search for information that will allow the solution to
be known” (see [52] p. 268). Important as this distinction may be, for Simon
it is an extension more than a replacement of the simple search paradigm. The
re-evaluation of planning notions and the multiple representation in general lead
to a better qualification of the role of the heuristic search in problem solving.

5 In Search of Knowledge, I: Toy Problems and Real-Life
Problems

Concluding his review of game programming on computers, Samuel observed how
it was only a first step towards understanding computer-simulation methods of
intelligent behaviour, and that future progress would consist of applying these
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methods “to real-life situations with increasing frequency”, while “the effort
devoted to games or other toy-problems will decrease” (see [49] p. 192).

This prediction proved right to a great extent. It is true that many toy prob-
lems have continued to play an important role in some AI research and later in
Cognitive Science, a role often compared to Drosophila in genetics – as Amarel
[5] said again in an analysis of another classic AI toy problem, the Hanoi-tower
puzzle (by the way, this was a favourite during AI’s half century, above all in
the experimental research on human subjects by Simon and various co-workers).
Furthermore, it is also true that the most famous and acclaimed successes of AI
in its first half century have been realised in games, chess in particular8. Yet it
is also true that, during the AI’s second decade, researchers’ attention turned to
real-life problem solving, with a shift in interest on the role played by knowledge
in problem solving. In this way, on one hand, certain research areas came to
the fore again (e.g., machine translation) and, on the other, new issues came
up, relating to the complexity of real-life problems, which human beings usually
confront on the basis of incomplete knowledge, with the aid of background or
common-sense knowledge9. Finally, more recently real-life problems have been
seen in terms of interaction with the real world by “situated” and “embodied”
agents, according to the lessons from new robotics (see [10] ch. 6, on all these
topics).

In the previous section we saw how the internal limits of the “simple tree-
search paradigm” raised the question of its extension to include the represen-
tation problem (and the multiple representation-problem in particular). In this
and the next section I would like to show how we arrived at knowledge repre-
sentation: a new and important extension to this “paradigm”.

The two issues, (multiple) problem representation and knowledge represen-
tation, can be considered distinct, even though they have an intersection (see
[15]). Basically, the issue of knowledge representation concerns how to represent
knowledge in an explicit form within a program, so that it is easily accessible and
modifiable according to circumstances. The issue at hand here is that of the spe-
cific structures – data structures – hat the programmer interprets as statements
of what the program knows, and which carry out the specific role in causing
the program’s behaviour10. In the early AI programs discussed so far, the prior
knowledge needed to reduce the search (usually little, given the more or less
“toy” nature of the majority of problems considered) was usually represented
in an implicit way in the selection rules in heuristic programs (for example, a
generator could incorporate information from the task environment, so that only

8 On chess as “the Drosophila of AI”, see [8].
9 A well-liked description of this shift in interest is contained in Feigenbaum’s account

of his lecture on the knowledge-based approach in AI and the DENDRAL program
in the early 1970s at Carnegie-Mellon: “‘You people are working on toy problems,’
he said. ’Chess and logic are toy problems. If you solve them, you’ll have solved a
toy problem. And that’s all you’ll have done. Get out into the real world and solve
real-world problems”’ (see [18] p. 65).

10 A well-known authoritative statement of this knowledge-based view in AI was later
given by Smith [61] in the form of the “knowledge representation hypothesis”.
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states satisfying given criteria will be generated in the state space – see, e.g.,
[52] for a discussion).

Notice that the question of how to explicitly represent knowledge in a program
was raised, in an embryonic form, at the very beginning of AI. At the 1958
Teddington Symposium, McCarthy [28] described a prototype of a program, the
Advice Taker, which was supposed to be able to make plans and to deduce
consequences, and so take actions, on the basis of both a set of “advice” coming
from the programmer and a body of common-sense knowledge on probability,
expectations, etc. for a given context or world. The point at issue here is that
this knowledge had to be expressed in an explicit way in the form of sentences
of first-order logic, rather than being embodied into the selection rules of the
program11.

Around ten years later, McCarthy and Hayes [31] distinguished the “episte-
mological” problem from the “heuristic” problem in AI. The former involves how
an intelligent agent represents the world via “an adequate model” which makes
him able to deduce consequences and carry out actions. The latter concerns the
study of specific mechanisms dedicated to this purpose. According to the au-
thors, most of the work in AI up to that time could be regarded as devoted to
the heuristic problem (p. 466)12.

However, perhaps it would be more correct to say that the AI approach preced-
ing the distinction between the epistemological and the heuristic problem often
contaminated these two problems. Within this framework, Minsky was one of
the first to insist explicitly on the role of knowledge representation, presenting
a collection of programs in the mid-1960s under the title Semantic Information
Processing [33]. These were written in LISP and IPL-V, and would have a no-
table influence on the immediate future of AI: SIR by Bertram Raphael, ANAL-
OGY by Thomas Evans, STUDENT by Daniel Bobrow, SEMANTIC MEMORY
PROGRAM by M. Ross Quillian, and QAS by Fisher Black. In opposition to
previous programs dealing with “formalized tasks” (games and toy problems)
some of these new programs dealt with real-life or every-day tasks, such as un-
derstanding natural language and answering questions – thus disproving “one of
the most popular misconceptions about artificial intelligence [i.e.] that problem-
solving by computers is confined to precisely ’formal’ problems”, as Minsky put
it (see [33] p. 11).

Other programs from around the same time, published in the collection Rep-
resentation and Meaning, edited by Simon and Siklóssy [59], were moving in the
same direction, where knowledge and semantics were acquiring a more dominant

11 The main difference between the Advice Taker and the heuristic programs of the
time (LT and the GEOMETRY MACHINE) “is that in the previous programs the
formal system was the subject matter, but the heuristics were all embodied in the
program. In [the Advice Taker] the procedures will be described as much as possible
in the language itself and, in particular, the heuristics are all so described” (see [28]
p. 77).

12 But notice: “The use of first order logic in epistemological research is a separate issue
from whether first order sentences are appropriate data structures for representing
information within a program” (McCarthy [29] 1038).



Searching in a Maze, in Search of Knowledge 13

role than in the past. Simon complained at times about the much lower influence
this collection had on the AI community than the one edited by Minsky. With
hindsight, this could be explained by the fact that Minsky placed more value
on the works he published within a framework that could be perceived as more
closely linked to the problem of “representation of knowledge”, as he called it.
The central role of semantics can be justified in this context, especially in certain
real-life tasks like those I have mentioned.

Minsky’s starting point is the same as Simon’s [52] and Simon and Siklóssy’s
[59]. In both cases, the attempt was to study some key concepts in early AI
(i.e. heuristics, generality and so forth) in light of a parameter centred not on
selective search in usually large state spaces “within the older goal-tree search
framework”, but on “the representation and modification of plans”, as Minsky
put it (see [33] pp. 10 and 9). Here too, the notion of planning was considered
important, but the point is that it wasn’t only building models or representations
which simplified the search to present a smaller combinatory branching. The
problem raised by Minsky was finding a suitable medium – or a suitable data
structure – to represent common sense knowledge, so that when used in the
right way by a program, it would display behaviour ascribable to the possession
of that knowledge, as I said earlier. Minsky observed how the diversity in the
suitability of a medium used to represent knowledge can influence the efficiency of
a question-answering system like Raphael’s once compared to Black’s (p. 17). All
of Minsky’s discussion revolves around issues of “common sense knowledge” and
“specialized knowledge”, and on how to manage and retrieve relevant knowledge
in the presence of “large bodies of knowledge”, with reference also to the Advice
Taker (McCarthy’s article is reprinted in his collection).

Later Amarel also seemed to distinguish the issue of finding and using new
knowledge about the problem by shifting to a better problem representation,
from the issue of constructing “a system of concepts and a language which is
appropriate for describing knowledge in [a] domain”, so that it becomes pos-
sible “to express knowledge and store it in the machine in a manner that can
be conveniently used for problem solving in [that] domain”. In the first case a
way of exploiting new knowledge consists of the usual shift to a simplified or
abstract problem space. In the second case, the problem at hand is how “to feed
background knowledge to a machine in an ’appropriate’ form”, i.e. in the form of
“structured data” (see [4] pp. 227 and 237). Amarel made this distinction on the
basis of programs dealing with real-life problems, such as a question-answering
program, e.g., Raphael’s SIR mentioned earlier, and the DENDRAL program
(see section 6): in both these programs the issue of knowledge representation is
crucial, albeit to different extents.

Later, when Minsky explicitly took on the problem of knowledge representa-
tion, presenting his well-known data structure, the frame, he did so by invoking
a “more mature and powerful paradigm” for AI than the “dominant paradigm
of the past”, i.e. the search paradigm. Notice, however, that the starting point
here too was traditional:
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The primary purpose in problem solving should be better to understand the
problem space, to find representations within which the problems are easier
to solve. The purpose of search is to get information for this reformulation,
not – as is usually assumed – to find solutions; once the space is adequately
understood, solutions to problems will more easily be found (Minsky [34] 59).

As with Simon, for Minsky too the new approach to “reformulating” the
problem space had been “implicit”, as he put it, in earlier discussions on planning
within the heuristic search paradigm. The limits of search strategies (such as
search for differences, hill-climbing, methods of tree-pruning and so forth) that he
pointed out are the same as those pointed out by Simon [52]. Yet, while Simon’s
context is problem representation, Minksy’s is frame systems: the possibility of a
“reformulation” or “reconfiguration or representation” that Minsky mentions can
be found in the alleged flexibility of this type of data-structure system. Frame
systems could lead to a way “to improve the strategy of subsequent trials”,
i.e. to improve the program’s future problem-solving performance. This is an
issue Minsky had raised previously in the same terms in Semantic Information
Processing : “What is needed for summarizing a search tree is not a numerical
utility-like value good only for comparison but a description-like expression that
can be used for analysis” (see [33] p. 11). It was hoped that the later role of
frames, as “description-like” devices, would make this analysis possible.

In conclusion, the issue of real-life problems has contributed to bringing to
the fore the issue of how to represent knowledge in an explicit form, as initially
raised by McCarthy in his formulation of the Advice Taker (notwithstanding
Minsky’s well-known later opposition to McCarthy’s “logicism”)13.

6 In Search of Knowledge, II: Well-Structured and
Ill-Structured Problems

In the passage quoted at the beginning of section 4, Newell spoke about how ear-
lier AI programs were concerned with “formalized tasks” and not “unstructured”
tasks. The distinction between these types of problems or tasks constitutes an-
other way of looking at the role of knowledge in problem solving. This is the last
topic mentioned in section 1 to investigate before reaching my conclusions.

Newell and Simon had initially identified “well-structured” problems with
problems which can be solved by OR techniques (see section 2 above). In this
case, the goals are considered as clearly defined, and the means of problem solv-
ing lie in applying algorithms and mainly linear-programming and optimisation
techniques:

Operations research has demonstrated its effectiveness in dealing with the
kinds of management problems that we might call “well structured”, but it has

13 It is beyond the limits of the present chapter to discuss the different proposals
regarding the knowledge representation problem in IA. See [7] for a discussion of the
role of knowledge representation in more recent AI research context.



Searching in a Maze, in Search of Knowledge 15

left pretty much untouched the remaining, “ill-structured problems” (Simon
and Newell [58] 4).

“Ill-structured” problems are those that are intrinsically complex, that cannot
be handled by the traditional methods mentioned above, but by problem solving
techniques in the newly-born heuristic programming, i.e. techniques inspired by
how human beings actually solve problems, both in “many important situations
in everyday life when the objective function, the goal, is vague and nonquan-
titative” and in situations, like the case of the combinatorial explosion, where
“computational algorithms are not available” or cannot be applied in practice
(p. 5). For Newell and Simon (writing in 1957) heuristic programming, although
in its very early stages, already seemed able to take on not just problems of the
latter type, like theorem proving or chess, but also problems closer to real or
every-day life, like management and marketing behaviour, albeit at a primitive
stage (see Simon [57] for a further analysis of the topic).

An authoritative point of view on the subject was later provided by Reitman
[47]. He distinguished problems handled by heuristic problem-solving procedures
(so by ill-defined procedures, heuristics were still considered in opposition to
algorithms) from problems whose formulation and criteria of generation and
control of the solution are both well specified and precisely defined. From this
point of view, a toy problem or a game, no matter how difficult (take chess for
instance), is still an example of a well-structured problem, whereas a real-life
problem is still an example of a really ill-structured problem (or “ill-defined
problem”, as Reitman put it).

Actually, Newell later observed that, once one accepts Reitman’s definition
of ill-structured problems, the programs mentioned in his and Simon’s 1958
paper [see 58] were only a demonstration that some ill-structured problems were
actually being handled by heuristic programming: precisely those problems that
“might constitute a small and particularly ’well-formed’ subset” of the whole
set of ill-structured problems (Newell [38]). In other words, heuristic programs
of this special subset had a degree of success by virtue of the fact that certain
aspects were well defined: they lacked well-specified methods of solution (in the
extent that they used heuristics), but were quite precisely defined regarding the
problem statement, goal and solution criteria.

Newell, opposing Reitman, then tried to define ill-structured problems in a
more positive way, referring not to the not-well-defined nature of the problem
formulation and solution, but to the problem-solving methods available. The do-
main of ill-structured problems is where general or “weak” methods are available:
and it is these methods which, according to Newell, characterise AI (examples
of such methods are generate-and-test, heuristic search, means-end analysis and
so forth – all milestones in heuristic programming). Compared to “strong meth-
ods”, weak methods are distinguished by their more general nature and less
specific knowledge. Newell, though, recognised how the issue of what constitutes
an ill structured problem might “remain only half answered” (p. 412), because
it remained difficult to capture an aspect which seems crucial: that “vague”
or indefinite quality of the information present within ill-structured problems,
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which seems to continue to distinguish them from well-structured problems. In
this “vague” information we can see the non explicit and incomplete knowledge
which is typical of common sense when the problem solver is dealing with real-life
problems.

There is one other open question. If for simpler toy problems it is possible to
ignore, to some extent, the knowledge that characterises the “expert” solution
to a problem, this is not possible for more complex toy problems and games
(chess again) and real-life problems in general. Such knowledge is present in the
form of less general methods or heuristics than weak methods. Furthermore,
Newell himself pointed out that “there is an inverse relationship between the
generality of a method and its power” (p. 372). This conclusion leads to the
question: To what extent is a “general problem solver” plausible? This is a
question that can be asked also for the plausibility of logic as a general or uniform
representational medium in all problem domains. It is not by chance that the
authors of DENDRAL, a program dealing with an ill-structured problem and an
ill-defined goal, started precisely from this question:

The study of generality in problem solving has been dominated by a point of
view that calls for the design of “universal” methods and “universal” problem
representation. These are the GPS-like and Advice-Taker-like models. This
approach to generality has great appeal, but there are difficulties intrinsic to
it: the difficulty of translating specific tasks into general representation; and
the trade-off between generality and power of the methods (Feigenbaum et al.
[19] 187).

With the DENDRAL program (studies starting in 1965 ca.) the focus moved
to specialized knowledge, intended not so much as a large data base, but as a
body of heuristic rules. In this case, these rules are not only general or weak meth-
ods, but are also specialized or task-specific rules (to be more precise, they have
stronger constraints imposed by the data). It was with this “shift in paradigm”,
as Ira Goldstein and Seymour Papert defined it, that expert or knowledge-based
systems entered the field of AI14.

Notice that the problem of ill-structure is not exhausted in the question of
specialised knowledge. The problem (as seen at the time of the Advice Taker)
concerns common sense knowledge – that sort of background knowledge which
is usually not explicit in a problem statement, at least in real-life problems.
Compare the missionaries and cannibals problem in its “laboratory” or toy ver-
sion with its real-life version, where, e.g., the real environment might permit
alternative ways of crossing the river – using a bridge, or by an airplane and so
14 Quoted by Feigenbaum [16] 1017. But regarding certain 1956 programs resembling

AI expert systems, see Simon [57]. It should be remembered that the concern for
GPS-like generality was originally based on the claim of the multipurpose nature
of human intelligence. As Slagle (60] [176) observed, “the hope is that once multi-
purpose programs can be written to solve simple problems [as was the case of GPS
at the time], the programs can be extended to solve more difficult problems”. A
common Drosophila-style strategy in AI – although not always as successful as in
genetics.
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forth (Simon [52] 275). If in the former case the problem, for a person or a com-
puter program, is well-defined, in the latter case we have a constantly changing
environment, which makes the problem ill-defined. Now think of chess. In the
abstract, it is an example of a well-defined problem, but in reality the player
comes up against difficulties and unexpected situations during the game which,
from the player’s point of view (be it a human or machine), render the problem
ill-defined, more or less like the missionaries and cannibals problem in its real-life
version.

All this leads us to consider different problems as all being ill-structured to
a greater or lesser degree for the problem solver, as a bounded-rationality agent
(see section 2). This point of view held by Simon detaches the question of ill-
structuredness from the nature of the methods employed (weak or strong), and
makes such a question relative to the limits of the problem solver, establishing a
continuum of degree of definiteness between the well structured and ill structured
ends of the problem spectrum (see [53] p. 183)15.

7 Conclusion

In the previous sections, I discussed topics and controversial issues from the fif-
teen or so years of AI immediately in the wake of Dartmouth. As we have seen,
already in this brief initial period the successive approaches to heuristic search,
(multiple) problem representation, knowledge representation and knowledge-
based systems were presented by different authors as “paradigms” within AI
research. Yet, it was the connectionists of the 1980s who explicitly described the
history of AI in terms of opposed paradigms – “symbolic” vs. “sub-symbolic”.
Above I mentioned the early stage in this opposition (which was often experi-
enced in an overly dramatic way in the history of AI), when I spoke about the
opposition between early neural nets and newly-born heuristic programming,
starting with the 1958 Teddington Symposium (see section 2).

I have shown elsewhere how difficult it is to take the idea seriously that the
history of AI consists of a succession of opposed paradigms (up to the most
recent, the situatedness paradigm) – at least if one interprets the term paradigm
in the same sense as historians of science, i.e. à la Kuhn (see [10] pp. 275-
279). Considering the issues discussed in this chapter, the authors mentioned

15 Any consideration of the immediate developments of this discussion would go be-
yond the limits I set myself for the present chapter. The missionaries and cannibals
puzzle was taken up again by McCarthy in the terms above, but with the aim of
making stateable in a formal language what is necessary in common-sense knowl-
edge. McCarthy’s circumscription rule gave rise to a long series of research on how
to formalise and to limit the contexts involved in real-life problem solving. Circum-
scription assumes the character of a “rule of inference” in toy problems and a “rule
for conjecture” in real-life problems: see the paper by McCarthy [30] in the Arti-
ficial Intelligence special issue on non-monotonic reasoning, which includes classic
contributions by D. McDermott, R. Reiter, R.W. Weyerauch and others. A proposal
opposed to McCarthy’s has been given by Simon [56].
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here do not seem to have used the term “paradigm” in this sense. Clearly, the
term was used by these authors when they aimed to characterise a research
program which brought new issues to the fore. These issues, even though new,
were recognised as “implicit” in the previous research program – to such an
extent that at times it was also possible to hybridise the products of these
different research programs.

Thus, it was the limits of the “simple tree-search paradigm” which suggested,
or forced, its extension, or integration, to problem representation. It is clear that
the latter research project neither replaces nor renders the former superfluous
(as should happen if we were to take the term “paradigm” seriously). As we have
seen, Minsky recognised how certain issues of his new paradigm were “implicit”
in internal discussions in the previous research. Simon stated that his aim was
to reconsider the simple tree-search approach – but in order to overcome the
“gulf” (as he called it) which separated search from problem representation,
he suggested “hybrid systems” (see [52] p. 276): from here comes the need to
consider problem solving primarily as information gathering. Feigenbaum, when
presenting the first results of his research on DENDRAL, pointed out that his
project lay within what he considered “the mainstream of AI research: problem
solving using the heuristic search paradigm” (see [15] p. 1016).

A different matter is the case of topics known to be important, but how to
tackle them was unknown. This was due to a factor which, as is obvious, has
conditioned the history of AI, some of its choices, some of its successes, some of
its illusions – advancement in computer technology. Just to stay with one of the
issues dealt with in this chapter – the crucial role of knowledge – Daniel Crevier
refers to these words by Simon in his 1991 interview with him about early AI’s
interest in toy problems: “It isn’t as though people weren’t aware that knowledge
was important. They were steering away from tasks which made knowledge the
centre of things because we couldn’t build large data bases with the computers
we had. Our first chess programs and the LT were done on a computer that had
a 64- to 100-word core and a scratch drum with 10,000 words of usable space on
it...” (see [13] p. 177). So, concentrating initially on prevalently “toy” tasks was
to some extent an obligatory choice: with the major exception of chess, those
tasks did not need much specialised knowledge. I would like to add that, despite
the fact that on various occasions Simon has pointed out – along with others –
the Drosophila-like role of toy problems in AI, he also warned us to be cautious,
particularly in IPP, in “extrapolating what we learn about problem solving in
puzzle-like domains to problem solving in information-rich domain” (see [55]
p. 142).

In this chapter my aim was not to discuss recent developments in the issues I
stated at the beginning (see section 1). Rather, I aimed to show through which
clusters of problems these issues were raised and tackled in the pioneering phase
of AI. Finally, I do not wish to miss out on a quick look at the recent evolution of
one aspect which concerns the heuristic search as much as knowledge represen-
tation. Both have competed to raise new research issues and theoretical insights
since early times, also by revisiting issues and methods which had previously
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been if not abandoned, then at least partially set aside, like the issue of general
or weak methods. Briefly, this is not an isolated incident in the history of AI
(think of very different cases like machine translation or neural nets). Hence,
reflecting upon them might suggest caution in imagining future scenarios in the
evolution of AI (alternative (i) I referred to above, section 1).

I concluded the previous section with the DENDRAL system. As we have
seen, the general or weak methods were judged inefficient, and so had to be
“strengthened” by domain-specific knowledge. It was this that essentially as-
sured the system’s good performance. Feigenbaum returned to the issue, after
the first decade of experimenting on expert systems, by pointing out how their
performance was “primarily a consequence of the specialist’s knowledge”, and
“only very secondarily” due to the generality of the methods (see [16] p. 1016).
However, the limits of expert systems came out during the 1980s. This is known,
and it has been summarised by Lenat and Feigenbuam: “A limitation of past
and current expert systems is their brittleness. They operate on a high plateau
of knowledge and competence until they reach the extremity of their knowledge;
then they fall off precipitously to levels of ultimate incompetence. People suf-
fer the same difficulty, too, but their plateau is much broader and their slope
is more gentle. Part of what cushions the fall are layer upon layer of weaker,
more general models that underlie their specific knowledge” (see [25] p. 196, my
italics).

Thus, also experiences as different as Feigenbaum’s and those of other re-
searchers in the field of expert systems such as Douglas Lenat’s in the 1980s,
seemed to converge towards the same conclusion. Lenat’s programs in those years
– AM and EURISKO – tackled vague and ill-defined problems. For example,
AM, though not an expert system, dealt with concept formation in mathemat-
ics, with the initial aim of getting close to “the ideal trade-off between generality
and power” (see [23] p. 263): a difficult goal, already attempted in AI (see [14] p.
1969). EURISKO was a step forward: it used heuristic rules to produce or learn
new rules, or metaheuristics16. Both of Lenat’s programs and the classic expert
systems of the time were endowed with domain-specific or specialised knowledge
(but the latter with a higher amount than Lenat’s programs). They proved, how-
ever, drastically lacking in what Lenat and Feigenbaum have called “consensus
reality knowledge”: i.e. knowledge of a general and also analogic type, based on
weak methods, which constitutes the underlying background of every specialised
intelligent performance. As the authors concluded for EURISKO, its “ultimate
limitation was not what we expected (CPU time), or hoped for (the need to
learn new representations of knowledge), but rather something surprising and
daunting: the need to have a large fraction of consensus reality already in the
machine” (see [25] p. 206). This was a true re-evaluation of general weak meth-

16 As to the use of metaknowledge and metarules in AI systems in the 1970s and 1980s,
see [1]. One of the main reasons that weakened AM’s performance was its inability
to learn new heuristics. It is interesting to note that EURISKO fulfils some of the
characteristics Gelernter and Rochester speculated about regarding high forms of
learning and above all their “theory machine” (see [20] p. 73 ff.).
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ods – actually never totally abandoned, but now placed within the context of
the vagueness (Newell’s term above) that characterises common-sense knowledge
underlying domain-specific knowledge.

The rest is known, and it is today’s story. As far as Lenat is concerned, there
is CYC, a system which could be able to handle consensus reality knowledge
in a vast and efficient way: an ambitious and controversial system in progress
– presently influential in different research fields on ontology and the web (see,
e.g., [24] for a recent statement, and [27], [46]). Its eventual success is part of
the possible scenarios of AI’s future, but its roots lie in the early stages of AI
that I have discussed in the present chapter.
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Abstract. The article is meant to be kind of the author’s manifesto
for the role of logic and deduction within Intellectics. Based on a brief
analysis of this role the paper presents a number of proposals for future
scientific research along the various dimensions in the space of logical ex-
plorations. These dimensions include the range of possible applications
including modelling intelligent behavior, the grounding of logic in some
semantic context, the choice of an appropriate logic from the great vari-
ety of alternatives, then the choice of an appropriate formal system for
representing the chosen logic, and finally the issue of developing the most
efficient search strategies. Among the proposals is a conjecture concern-
ing the treatment of cuts in proof search.

Often a key advance is a matter of applying a small change to a single
formula.

Ray Kurzweil [21, p.5]

1 Introduction

Luigia Aiello has made numerous important scientific contributions in many
areas of Artificial Intelligence. But it is fair to say that her core interest has
always been in a logical approach to Artificial Intelligence (AI) throughout her
career. For instance, as early as 1980 her paper [1] appeared in the section on
theorem proving at the very first AAAI Conference, noteworthily one out of
merely two papers presented by European authors at this legendary conference
in the US. Many more papers in a similar vein by herself and her numerous
students preceded and followed this particular one.

It is for this reason that I chose to honor her at the occasion of her sixtieth
birthday with a perspective contribution to this particular area. I would like
to express through it my highest respect for her achievements and my deepest
gratitude for the professional and personal friendship and the fruitful cooperation
which has lasted for more than a quarter of a century.

The elder AI generation still has vivid recollections of the hot debates of
the seventies in the last century within the community concerning the role of
logic and deduction in AI. Notwithstanding the GOFAI (“good oldfashioned AI”)
debate triggered by Rodney Brooks, the central role of logic within many areas of
AI and Computer Science (CS) today is undisputed – perhaps even too much so.
� Also affiliated with the University of British Columbia.

O. Stock and M. Schaerf (Eds.): Aiello Festschrift, LNAI 4155, pp. 25–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



26 W. Bibel

Like in any scientific discipline it is from time to time worthwhile to review the
direction of research from a high-level point of view, thereby abstracting from the
day-to-day focus on specific research problems, and rather take the entire picture
of the discipline into consideration. This is what the current article aims to do.
In other words we want to discuss the various dimensions of logic and deduction
and their role within AI. Neither the analysis nor the role description can in any
way be comprehensive in such a short article; they rather reflect the bias of the
author concerning his judgment of particularly important issues. The result of
these considerations is a number of concrete proposals for future research which
are deemed particularly promising. In short, the text may be regarded as the
author’s manifesto for an area in which he has worked for nearly four decades.

For completeness the article contains a short summary of the goals of AI –
or rather of Intellectics. As we all know those seventies also brought about a
schism of our discipline in the way of a separation of the field into the more
systems-oriented AI and the Cognitive Science (CogSci) focussing more on the
study of natural intelligence and its basis. I am deeply convinced that these
two directions have to go together in a synergetic way in order to achieve their
mutual and intertwined goals. This deep conviction is the reason for my stubborn
adherence to a common name, Intellectics [6], proposed in 1980 for the discipline
spanning both subareas; in short, Intellectics = AI & CogSci.

As we said the article analyses the nature and role of logic in achieving these
general and longterm goals. It begins with a brief view at those goals of In-
tellectics, thereby pointing out two major subgoals, viz. solving the integration
problem and contributing to the solutions of the complex problems with which
our societies are currently confronted, whereby logic could play an important
role. In addition to the standard applications of logic we then outline as a chal-
lenging research line its role in modelling intelligent behavior in a conjunctive
way and in compiling from such a descriptive model applicational systems. This
development would include a logical modelling language which is not suffering
from the limitations experienced with languages like UML.

While logic currently is used exclusively without any kind of grounding its
constants, such an association with semantic information could be rather ben-
eficial in terms of efficiency, and is therefore proposed as another challenge. A
further section deals with the choice of an appropriate logic in dependence of
the intended application and the required features including change, vagueness
and uncertainty and proposes research on some measure for a more rational
distinction among a variety of logics.

Once we have settled in for a chosen logic for a certain application there
is still a wide variety of formal systems to chose from for expressing the logic
and support the inferential mechanisms. We once again remind of the important
research strategy aiming at a formalism which is as compressed as possible.
While remarkable results have been achieved in this line of research such as
the ileanCoP system, the approach as a whole is not exhausted at all. Several
important longstanding questions have still not been solved and incorporated
into actual systems and further ones are raised for future work in this respect.
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Among these is the challenge of integrating cuts which lead to shorter proofs. We
conjecture that a way to do so is by the use of factoring and engaging a nonclausal
form calculus (or a subsequent linear transformation to clausal form).

Finally we discuss that part in proof search on which most efforts were spent in
the last decades, which is the development of efficient search strategies. We argue
that such strategies would need to be context dependent and that really efficient
and specific ones might become too complex to develop by hand. For this reason
we propose an automatic design of search strategies based on experimental data, a
methodology successfully applied already to solving hard combinatorial problems.
We also encourage the community to reconsider the integration of examples into
the search for proofs and propose to do so in a preprocessing manner.

2 Main Intellectics Goals

Intellectics aims at a profound understanding of the working of human intelli-
gence in brains (CogSci part) and at mechanizing human-level intelligence (AI
part). The fiftieth anniversary of the Dartmouth Conference in 1956 has given
rise to numerous reflections on what the field has achieved in the first half cen-
tury in pursuing these goals and what should be done now in order to progress
further. The issue of the AI magazine (vol. 26,4) celebrating the 25th anniversary
contains numerous statements of this kind. They suggest new challenge problems
and research strategies.

But perhaps one should once again take one step further back and ask whether
and why we should continue to pursue these grand goals. As far as the CogSci
part is concerned the justification is straightforward. Curiosity is inherent in
human’s nature and we are simply curious what mechanisms make us intel-
ligent. A deeper insight into these mechanisms could have numerous beneficial
implications including cues how to educate humans more effectively, how to com-
municate more smoothly among ourselves, how to improve our problem solving
capabilities, and so forth.

The justification of the AI part is not as obvious. Why should the more than
six billions of humans on earth strive for a new breed of intelligent agents? Well,
first of all Intellecticians are convinced that the CogSci part of the goals cannot
be achieved without actually realizing human intelligence in an artificial way. In
other words, AI is a prerequisite for CogSci in this sense so that AI inherits its
justification already from CogSci. Reversely, AI also needs CogSci insights for
inspirations and new ideas how to proceed. In fact one approach to AI consists
in reverse engineering of the brain [21, Ch.4] which can only be achieved on the
basis of CogSci input (not least the one from the neurosciences). This mutual
dependency and the common goals are good reasons for regarding AI and CogSci
as a single discipline. Apart from the basic justification of AI just mentioned, the
short history of AI research has produced plenty of evidence that it generates
techniques which have become extremely useful in numerous applications, even
so many that any short list of examples would leave us with too a distorting
picture.
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I myself have always regarded the ultimate AI goal as a rather distant one
providing the Intellectics community with a socially uniting umbrella, but too
distant to influence our daily work in concrete terms. In this vein I continue to
think that our next subgoals should rather be guided by responsibilities to the
society at large, although in such a way that they are deemed compatible with,
and their achievements steps towards, AI’s grand goal. In this sense I see two
such subgoals as of paramount importance, one basic the other applicational.
The first, basic subgoal consists in solving the urgent issue of integration, the
second in attacking fundamental problems in our societies whose solution could
be achieved by AI technologies. Both subgoals will be expanded further in the
following.

Intellectics in general and AI in particular today is rather fragmented. The
vision community within AI has little or no interaction with the knowledge
representation community, to give one out of many possible examples. As a
result we have vision systems such as those built into the autonomous vehicle
Stanley which triumphally won the DARPA contest in 2005; but Stanley“knows”
literally nothing at all about the world it sees. How could we integrate into
such vision systems knowledge systems without reprogramming everything? How
could we then extend the resulting system in the same vein by integrating speech
and natural language understanding systems, planning systems and a variety of
systems with further functions including those beyond AI in a way so that the
final integrated system features a truly intelligent behavior? These questions
refer to what we call the integration problem. We believe that logic holds the key
for solving this problem as discussed in the subsequent section.

Humanity faces dramatically complex problems to be solved in a relatively
short time, foremost the problems caused by the world climate change due to
the man-made increase of greenhouse gas like carbon dioxide and methane in the
atmosphere the consequences of which can be traced in many global phenomena
like the glacier retreats, the warming of oceans leading to a dramatic reduction
of life in it and to numerous other frightening consequences, the disappearance
of virgin forrests, the spreading of deserts, to mention just a few [25]. Despite
the exponential growth of technological advances we have to make sure that
enough time is left for humanity to be able to harvest the fruits of these advances.
Namely, the intrusion of these advances into the social mechanisms seems to take
place at a much slower pace, as some of those (like politics, law, social struggles
etc.) have not changed much since ancient Greek and Roman times. Hence,
it is currently undecided where this brinkmanship of meddling into the global
mechanisms of nature will lead us. Therefore scientists have the reponsibility to
contribute to the solutions of these fundamental problems rather than pursuing
prestigeous goals for the goals sake.

AI technology can contribute substantially in this endeavor in many ways
as has been described in great detail in my recent book [8]. I see for instance
a key role for knowledge and problem solving systems in a more rational ap-
proach towards solving societal and global problems such as the one just men-
tioned (viz. the world climate). Problems of this complexity cannot be coped
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with by the locally oriented problem solving attitude of humans but only by a
truly global consideration of all aspects involved of the kind as realized through
objectively accumulated knowledge bases and general problem solving mech-
anisms. In [10] this potential has been outlined for the complex area of law.
Progress in such domains which are fundamental for the prosperity of soci-
eties – and there are many more than just the legal domain – would have an
even far greater impact also for the standing of AI as a discipline than, say, a
program which beats the worldmaster in chess, notwithstanding the fact that
this is indeed a truly impressive achievement. Another vital domain of applica-
tion of this kind of AI technology is science itself as has recently been pointed
out in several foresighting reports [11,15] followed by the 23 March 2006 spe-
cial issue of Nature. Again we believe that logic is substantial for these kinds of
contributions.

The emphasis on these two selected subgoals is not meant to diminuish all the
fascinating work currently going on in all other subareas of Intellectics. Rather
we want to point out that these particular ones deserve at least the same level of
attention. We do sense an imbalance in this respect which to some extent may
be due to the schism between AI and CogSci.

3 Why Logic?

Logic is often paraphrased as the language of thought. Because thinking is a
crucial component of intelligence, logic on this account will most likely play
an important role in an artificially intelligent agent at some level of abstraction.
Aspects of this role can already be observed in knowledge systems, in automated
theorem proving (ATP), logic programming, problem solving, and so forth.

Given these successful applications of logic we feel that no further justification
for the relevance of logic is needed. Nevertheless there is a fundamental criticism
of a logical approach to achieve artificial intelligence. According to this argument
our brains function in a rather different way. For instance, catching a ball does not
involve solving diffential equations but a direct transformation of the observed
movements of the ball into an appropriate movement of the player’s arms and
legs. Similarly, it is supposed that reasoning as well is realized in the brain
by analogue direct transformations rather than by logical deductions. While
this may well be the case it is still important to understand the underlying
mechanism in terms of the higher level of abstraction of logic, as it is important
to understand a ball’s movements in terms of differential equations. How we
eventually will realize such behavior in artificial systems is quite an independent
question.

Besides this role of logic as the language of thought there might be another
similarly prominent role for logic in Intellectics. As we said in the preceding sec-
tion understanding intelligent, cognitive behavior and making machines exhibit
such behavior is the goal of Intellectics. In order to characterize this additional
role of logic we begin with mentioning that there are at least three different
viewpoints from which this goal can be approached. The first is the viewpoint
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of observing and analyzing intelligent behavior in existing creatures, foremost in
humans. The second takes the perspective of future artificially intelligent systems
or robots and their potential architectural design without much ado about how
to realize it with present technology. And the third focusses on concrete steps
towards realizing selected intelligent functions with present technology which
eventually might be part of a future intelligent agent.

Each of the viewpoints has its merits and each is necessary for a future over-
all success. Depending on which of these viewpoints one takes rather differing
standpoints and preferences may be chosen. In the past these differences were,
as already indicated in the Introduction, the cause for schism and hot debates
in the community. For instance, CogSci – rooted deeply in the first and analytic
viewpoint – separated from AI in the late seventies (see [16, pp. 33 f] for some
background information) mainly because the AI community to a large extent
became obsessed with quick commercial successes based more or less exclusively
on the third viewpoint which is synthetic and bottom-up. How about the second
viewpoint?

It seems unlikely to me that the current bottom-up and patchwork-like ap-
proach in AI will ever lead to a truly intelligent agent. Ultimately this goal will
not be reached but in a top-down fashion starting from the insights gained by
CogSci, Neuroscience and by introspection (cf. [21, p.168] for a similar argu-
ment). For that purpose these insights need to be accumulated in a computa-
tional model reflecting the many facets of human intelligence. The generation of
such a model is a Herculean task given the complexity of intelligent behavior.

The only way I could think of mastering it would be a conjunctive one in
the logical sense. That is, if we have two independently generated parts M1, M2
of the model then these can be combined by a simple conjunctive (or additive)
operation like logical conjunction M1 ∧ M2. The reason for this requirement
lies in our human way of insight. We are bound to understand just small frag-
ments of the entire workings of intelligence at any given time. So in addition
to forming each single fragment in some representation there must be some
operation which makes a coherent mosaic out of the myriads of represented frag-
ments. The operation must be simple in order to cope with the shere amount of
pieces.

In other words I am pleading here for the accumulation of a coherent, formal-
ized and implemented model of intelligence in the sense of the second viewpoint.
This task would involve many scientists, even generations of scientists over a
long period of time. Could and should we afford such a grand endeavor? Yes,
we could because the project would necessarily employ an economic “anytime”
procedure of the following kind.

Such a model would have to be in some way descriptive in order to comply
with the requirement of conjunctiveness, whereby descriptive (or declarative)
is meant in a rather broad sense possibly even including natural language de-
scriptions, pictures and scenarios, the simulation of dynamic processes, etc. At
any given time the model accumulated upto a given point could be synthesized
to a working agent featuring all the aspects accumulated in the model. This
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means that the model could at the same time serve a variety of many practical
purposes in the sense of the third viewpoint. Namely, for each particular ap-
plication one selects the desired parts in the model existing upto that point in
time and synthesizes from there the applicational system. In other words the
second and the third viewpoint could from there on be pursued in a synergetic
manner.

This vision assumes two major prerequisites in order to be realizable. The
first is the existence of a conjunctive formalism which is descriptive in the sense
just indicated. Since logic is both descriptive and conjunctive it is exactly here
where we see a central role for logic, possibly an extended logic with many more
features than currently familiar. The second prerequisite is a mechanism which
synthesizes working systems out of such a formal model. This is less illusionary
than one might think at first sight. Just think of current practice in systems
engineering which often generates a model in some language such as UML (ie.
universal modelling language) and extracts from it the systems code, to some
degree in an automated way.

The analogy with UML demonstrates that we are proposing here a rather
realistic and fruitful research project with two major research lines. One is the
development of a language like UML but without UML’s severe limitations which
at present are painfully felt in many applications. Most likely such a language
would be more logic-like. The other line consists of a further automation of the
synthesis of systems code out of a formalized model. Both goals are of utmost
importance for current software practice. It is these two goals which drive the
Mercury project [2] (see also below Section 6) for exactly the reasons I have given
here. So the grand endeavor of accumulating a model of intelligence could in fact
be pursued in parallel with and on the basis of research on very practical tasks.
In addition, the methodology promoted here for evolving a model of intelligence
would of course be useful for any area which strives for understanding complex
structures, eg. those present in social systems.

As we just touched upon current software practice, it is interesting to take
a retrospective view and note how little progress the software community has
achieved in the last thirty years in terms of a truly user-oriented software ap-
proach of the kind which the present author described more than thirty years
ago (see eg. [3] and the references given therein). In essence that approach (orig-
inally termed predicative programming) shares the methodology with what is
described here for developing a model of intelligence. So in a nutshell I have
here just reiterated for the development of intelligent agents what I proposed
three decades ago as a better way of producing software. In this context it is
encouraging that the recent years have indeed seen remarkable steps into this
direction also within the software community. Namely, computation independent
models (CIM), model-driven architectures, post requirement specification trace-
ability, and several further terms of this kind are now the catch-words of the day
circumscribing an approach to software generation of the kind envisioned with
predicative programming.
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4 On the Issue of Grounding

Logic employs a formal language without any grounding. A constant symbol
such as a or table has no semantics at all. A logical statement like On(glass,
table) may be subject to many different interpretations, not the one intended by
the choice of the names of the constants. Human knowledge seems to operate in
a completely different way (and the specific discipline of semiotics studies the
meanings of human symbols) – or does it? Well, we do not really understand
the working of the brain wrt. its knowledge processing, so at the time being we
cannot be sure.

Nevertheless anyone can experience by introspection that many seemingly
logical conclusions in everyday life are drawn by inspection of a mental model
rather than by deductive inference [19]. For instance if someone tells me that
a book lies on the table with a glass standing on the book, I “see” that in
this imagined scenario the glass is above the table without regress to formal
rules concerning the transitivity of the “on”-relation and its connection with the
“above”-relation.

If, on the basis of such experience, we take for granted that the brain realizes
logical conclusions partially by way of inspecting mental models the question
naturally arises whether an analogue mechanism might not be similarly useful
in AI systems. It is therefore our proposal to investigate this possibility in future
research. Here are a few ideas how this might be achieved.

In the brain the word, say, table is associated with the sensory information
deriving from a number of concrete tables experienced out there in the world. Al-
ready the issue of this association raises a number of questions. Does the mental
model of a table refer to the sensory data of a particular, selected table? Or does
the brain use some mechanism of abstraction to generate some mental model
of table with the common characteristics of all experienced tables? Anyway, an
artificial agent could similarly associate with a name such as table, used in its
logic, corresponding sensory data and classify it as a table, ie. as a particular
unary predicate. Similarly with any other constant, function or predicate. There
might be many ways to exploit such an association in the reasoning processes
carried out within a logical system. Such an association would be a first step
towards involving a true semantics in machines and would have great relevance
for many applications where knowledge plays a key role. We will come back to
one of these applications in Section 7 where we discuss examples supporting the
inferential process which in AI was the first and sofar only attempt to integrate
this kind of information.

5 Which Logic?

The history of logic has produced a great variety of logics. One of the reasons
for this variety is the choice one has between axiomatization and logical struc-
ture. In other words, some more advanced features of natural expression can be
characterized in an axiomatic way or, alternatively, be built into the logic itself.
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An example is how actions and change are formalized. Logic has tradition-
ally been used to model static logical reasoning while changes in the modelled
world have been considered as quite different a matter. Modelling applications
like planning and computation however have forced us to integrate change into
logical frameworks. How this best is done is still a matter of debate. The situa-
tion calculus was one of the very first attempts of this kind which uses first-order
logic to characterize the features needed to model actions and change in an ax-
iomatic way. In a series of papers eventually resulting in [9] the present author
has developed a transition logic as an alternative. The idea is to regard changes
or transitions as first class citizens (in the form of transitional rules) within
the formal framework and otherwise keep the logical part more or less like in
first-order logic. A related approach focussing on an integration of concurrency
is described in [20]. Modal logic, linear logic as well as the more recent com-
putability logic [18] in contrast build changes into the logical connectives inside
the logic.

There is an even larger area open for research in this topic of modelling
changes. Namely, the bread and butter of actual modelling and simulation sys-
tems (eg. for modelling the climate, ocean currents, physiology, etc.) are differ-
ential equations. But in addition we would urgently need knowledge of a logical
kind to be integrated into such systems. However the author is not aware of
any practical formalism which could provide the theoretical basis for such an
integration.

Another example of modelling features in logic is vagueness and uncertainty
where the same kinds of alternatives have been developed. Namely, there is the
basically first-order treatment extended by probabilistic features as in [28] and,
alternatively, there are logics which express vagueness and uncertainty by means
of the logical operators like fuzzy logic, nonmonotonic logic and so forth.

Upto this day there is no systematic study on which a rational choice of an
appropriate logic in dependence of the intended application and the required
features could be based. Research rather proceeds in trying out many possibil-
ities at the same time and rather independently. This unsystematic strategy is
one reason for a waste of resources in the community which should be taken
notice of.

This is not to say that we are in lack of any comparative arguments concern-
ing the various logics. An important one is the complexity of the proof search.
For instance in description logics we have a detailed classification in this re-
spect which of course is extremely helpful. However, there seems to be no way
around involving logics which – assuming P �= NP – are computationally non-
polynomial. Among them there is still a great variety of logics waiting for a
distinction through some measure. Apart from the ones mentioned to handle
changes and uncertainty there are many more where such a distinction would be
rather helpful.

So here we have come across another proposal for future research in our do-
main namely to work out comparative arguments or measures distinguishing
different logics in view of intended applications. While I refrain from stating any
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preferences in this respect which would be based merely on personal prejudice,
my experience still tells me that classical first-order logic might in some form or
another continue to play a major role in future formal logical reasoning as would
higher-order logic whose potential seems still underestimated.

6 Formal Systems

There are numerous formal systems (or calculi) which encode in one way or
another a given logic. Let us take first-order logic as our paradigm example
because of its wide dissemination although any other logic could as well have
been selected to make the point.

Chapter 4 in [7, pp. 97ff] demonstrates that such formal systems may differ
in the degree of their compression. Thereby we consider a formal system S1 to
be more compressed than another S2 if any proof in S1 is shorter (in terms of
the number of symbols required) than the corresponding one in S2. For example,
Gentzen’s formal system of natural deduction NK is less compressed in this sense
than the tableau calculus.

Occasionally compression may result in a substantial change in the complexity.
For instance, the elimination of the cut rule leads to a less compressed calcu-
lus and to possibly exponentially longer proofs. In most cases however, com-
pression has less dramatic effects. For instance the connection calculus is more
compressed than the tableau calculus although the proof lengths differ only by
a polynomial factor. This however does not mean that such a compression is
worthless. On the contrary, our experience shows that the performance may in-
crease dramatically as we demonstrated through a comparison of leanTAP with
leanCoP in [27]. In fact, the intuitionistic version of leanCoP, called ileanCoP, is
now by a wide margin the fastest theorem prover in existence for intuitionistic
first-order logic [26].

In the preceding discussion we measured compression in terms of lengths
of proofs. It is interesting to have a look also at the length of the program
underlying the theorem prover as a measure. leanCoP needs 333 bytes (!) for
representing the program. The smallest version of ileanCoP derives from lean-
CoP by adding 191 bytes so that altogether it needs exactly 524 bytes without
the approximately 30 lines required for prefix unification. Figure 1 shows the
three clauses of the long version of the source code in a way such that both,
leanCoP (everything except the underlined symbols) and ileanCoP can be seen.
Note thereby that not a single symbol had to be changed in leanCoP but only
additional information had to be included in the form of new terms and lit-
erals. The way how this extension can be achieved comes close to the kind of
predicative programming the author had in mind 30 years ago (and already
mentioned further above). In contrast provers like Otter need hundreds of thou-
sand times longer code. Modifying such a monster is simply impossible for any
person (except for the system’s author within a period of a few years after
completion).
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(1) prove(Mat,PathLim) :-
(2) append(MatA,[FV:Cla|MatB],Mat), \+ member(-(_ ):_ ,Cla),
(3) append(MatA,MatB,Mat1),
(4) prove([!:[]],[FV:[-(!):(-[])|Cla]|Mat1],[],PathLim,[PreSet,FreeV]),
(5) check_addco(FreeV), prefix_unify(PreSet).
(6) prove(Mat,PathLim) :-
(7) \+ ground(Mat), PathLim1 is PathLim+1, prove(Mat,PathLim1).

(8) prove([],_,_,_,[[],[]]).
(9) prove([Lit:Pre|Cla],Mat,Path,PathLim,[PreSet,FreeV]) :-

(10) (-NegLit=Lit;-Lit=NegLit) ->
(11) ( member(NegL:PreN,Path), unify_with_ occurs_check(NegL,NegLit),
(12) \+ \+ prefix_unify([Pre=PreN]), PreSet1=[], FreeV3=[]

(13) ;
(14) append(MatA,[Cla1|MatB],Mat), copy_ term(Cla1,FV:Cla2),
(15) append(ClaA,[NegL:PreN|ClaB],Cla2),
(16) unify_ with_occurs_ check(NegL,NegLit),
(17) \+ \+ prefix_unify([Pre=PreN]),

(18) append(ClaA,ClaB,Cla3),
(19) ( Cla1==FV:Cla2 ->
(20) append(MatB,MatA,Mat1)
(21) ;
(22) length(Path,K), K<PathLim,
(23) append(MatB,[Cla1|MatA],Mat1)
(24) ),
(25) prove(Cla3,Mat1,[Lit:Pre|Path],PathLim,[PreSet1,FreeV1]),
(26) append(FreeV1,FV,FreeV3)

(27) ),
(28) prove(Cla,Mat,Path,PathLim,[PreSet2,FreeV2]),
(29) append([Pre=PreN|PreSet1],PreSet2,PreSet),
(30) append(FreeV2,FreeV3,FreeV).

Fig. 1. Main part of the ileanCoP source code

The way compression is achieved by the connection method (CM) for vari-
ous logics has been described many times (eg. see [7] and the references given
therein) so that we can – and for reasons of space must – restrict ourselves
to stating the most important of its essential features. The CM analyzes the
structure of a given formula F without changing F whatsoever which has a
particularly beneficial effect on the length of proofs. It focusses on establish-
ing a spanning set of connections which characterizes the formula’s validity.
Thereby the procedure is connection- and goal-oriented, and unification is em-
ployed preferably relying on a particular partial-ordering on the set of terms
rather than on Skolemization [4, Sect. IV.8]. In the case of non-classical logics
the unificational part is extended, eg. with prefix unification in the case of in-
tuitionistic and modal logics. Complementary to the main top-down procedure
bottom-up preprocessing steps may reduce the proof problem substantially. A
CM proof in some connection calculus represents many different proofs in say a
Gentzen-type formal system, ie. it identifies them by disregarding and abstract-
ing from irrelevant differences. It is obvious that this dispensing with irrelevant
burden has a beneficial effect on the efficiency of the resulting systems. Sofar the
CM’s features.

The research program underlying the CM approach is not exhausted at all.
For instance, the transformation to normal form, even if done wisely, still in-
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troduces a lot of redundancy which distracts the proof search. A leanCoP for
nonclausal-form formulas along the lines of [4, p.150ff] is therefore highly desired
but requires a mind with the unique talents like that of Jens Otten nurtured
by an appropriate research climate. Further compressions like those described
in Chapter 4 in [7, pp. 97ff] (such as equality handling etc.) need then to be
integrated into such a system. And last not least a further boost for the perfor-
mance would come from a compilation of the various leanCoPs into a low-level
programming language preferably by some automatic mechanism. The way how
this can be achieved is shown by the remarkable Mercury project whose goal is
to combine the virtues of declarative programming with features from current
software practice, especially providing for (separate) compilation of declarative
code among many other attractive features [2].

6.1 A Conjecture Concerning the Cut

We have just pointed out the importance of compression and its role in the CM.
In recent years there have been complementary attempts towards the compres-
sion of logical calculi. A prominent one is Guglielmi’s calculus of structures [13].
It overcomes the restriction in Gentzen’s calculi that inference rules can only be
applied to surface (or main) connectives. Rather it allows inference rules to be
applicable at any time to any logical connective anywhere inside the formula, a
technique termed deep inference. Due to this enhanced flexibility the cut formula
can be restricted to atoms with predicate symbols exclusively from the conclu-
sion of the cut inference. This leads to a finitely generating system even if the cut
rule is included. Recall that the inclusion of the cut rule leads to a potentially
exponential compression as already mentioned at the beginning of this section
to see the relevance of this achievement. In Section 4.2 of [14] a similar result is
presented using meta-variables on arbitrary cut-formulas which insofar is to be
considered as a less compressed approach. No clue is given in either approach
when to apply the cut rule during the search for a proof as it could be applied at
any point. A strategy in this regard is then a major challenge for future research
in this area.

A first step into such a direction has been made in [23] with the so-called
folding up technique. It derives lemmata in a bottom-up manner during the
main top-down procedure which is derived from an amalgamation of the con-
nection and the tableau calculus underlying the high-performance proof system
Setheo [24]. The paper shows that folding up can be viewed as a controlled
integration of the cut rule.

Folding up builds into the connection tableau calculus a technique whose ef-
fect can alternatively be achieved with the form of factoring reduction which
has been termed FACTOR in [7, pp. 56]. In order to illustrate this relationship
let us consider the matrix {{p, t}, {¬p, q, s}, {¬t, p, s}, {¬q, r}, {¬s, r}, {¬r,¬p}}
which is the prime example for illustrating folding up in [23]. FACTOR applied
to this matrix twice leads to the nonclausal form (NCF) matrix {{p, {{t}, {¬t,
s}}}, {¬p, q, s}, {{{¬q}, {¬s}}, r}, {¬r,¬p}} by factoring the p in the first and
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third clause and the r in the fourth and fifth clause of the matrix.1 A connec-
tion calculus like the extension procedure for NCF formulas or matrices in [4,
p.150ff] would then behave exactly like folding up and establish the partial
proof of the matrix as in [23, Figure 8] with 5 extension and 1 reduction steps,
ie. altogether 6 connections. In other words the effect of folding up and hence
of the corresponding use of cut could equally be achieved with this kind of
factoring.

Note that this matrix is in fact not complementary, but could be made so eg.
by adding the clause ¬s to it. Also note that FACTOR could be applied yet an-
other time to the resulting NCF matrix by factoring additionally ¬p which yields
the matrix {{p, {{t}, {¬t, s}}}, {¬p, {{q, s}, {¬r}}}, {{{¬q}, {¬s}}, r}}. Now the
extension procedure would require only 5 extension steps (or connections) which
illustrates that even in the special case of factoring just literals this kind of fac-
toring is more powerful than folding-up. As a final remark we mention that FAC-
TOR could alternatively have been applied to the original matrix by factoring
the s in the second and third clause and the r in the fourth and fifth clause of the
matrix resulting in {{p, t}, {{{¬p, q}, {¬t, p}}, s}, {{{¬q}, {¬s}}, r}, k{¬r,¬p}}.
A different (partial) extension proof would then be found.

This result established by Letz concerning the relationship of folding up
and the cut along with the rather obvious fact just illustrated that in gen-
eral folding up can always be viewed as applying FACTOR a finite number
of times and then use a connection calculus for the resulting NCF matrix sug-
gests an even more general conjecture. Namely, we conjecture that the general
cut can linearly be simulated by FACTOR applied to arbitrary submatrices (ie.
not only atomic ones) a finite number of times and then a connection calcu-
lus applied to the resulting NCF matrix . I pose this conjecture as a research
challenge.

There is more evidence than the one just mentioned supporting the conjec-
ture. It is known that the pigeonhole formulas are hard for resolution requiring
exponential proof lengths [17]. In contrast they can be established with poly-
nomial proofs both in a Gentzen system with cut (or a Frege system) and in a
connection calculus using among others FACTOR as a preprocessing rule [5].2

The general reason for this advantage could be the following.

1 For readers unfamiliar with this kind of matrix notation for formulas we men-
tion that (in the positive interpretation) such a (clause-form) matrix, ie. a set of
clauses, can be read as a disjunction of its clauses (ie. sets of literals) which may in
turn be interpreted as conjunctions of literals. In an NCF matrix the elements of the
clauses may in turn be matrices, ie. disjunctions of clauses, rather than just liter-
als, and so forth until any nesting depth. In the negative interpretation (commonly
used eg. in the resolution literature) the role of disjunction and conjunction are in-
terchanged, ie. a matrix is interpreted as a conjunction (rather than disjunction)
of clauses, and so forth. The formal details may be found in a standard textbook
like [7].

2 Other reduction rules used are PURE, UNIT and Prawitz’ matrix reduction. Re-
naming, a rather strong rule, is not required for proving the formulas, but is just
used in the paper (on the metalevel) to be able to apply the induction hypothesis.
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The cut enables a compression of a proof in a Gentzen system.3 Resolution,
in contrast, although superficially of the form of a cut, does not feature the
full power of the cut rule since otherwise there would be polynomial resolution
proofs for the pigeonhole formulas. It is unknown how much of the power of cut
is inherent in resolution. It is conjectured that there is some of it and that this
part makes resolution occasionally more efficient than CM-type proof systems
for clausal logic (without FACTOR).

Since there is a close relationship between the formula to be proved and its
Gentzen-type proof, an elimination of the redundancy in the formula by com-
pression also decreases the potential for further compression of the proof by the
cut rule. FACTOR enables the elimination of redundancy without loss of in-
formation, ie. the formula’s “entropy” (in analogy with Shannon’s information
theoretical concept) increases by its application. When it reaches its maximal
value, there is no room anymore left for compression of the corresponding proof
by way of the cut rule.4 That basically is another way of putting the conjecture
above. Once this potential is exhausted by future CM-systems they should uni-
formly outperform standard resolution systems since then the only remaining
advantage of resolution will also be incorporated into them, and otherwise their
connection and goal-oriented behavior endows them with a clear advantage over
standard resolution systems.

It is generally believed that cut formulas have to be invented creatively with-
out much clue given by the conclusion formula which seems to speak against
our conjecture. However, Guglielmi’s result just mentioned might be seen as an
indication that all propositional information about the cut formula might in-
deed be contained in the conclusion while its first-order features, ie. the terms,
could anyway be determined by unificational mechanisms in the usual way. Some

3 As pointed out by Alessio Guglielmi (private communication) the cut may also play
the role of enabling case analysis. For example, the cut A → B, ¬A → B � B
features a way of trying to prove B in the two mutually exclusive cases in which the
hypotheses A and ¬A are assumed. This aspect of case analysis has been studied
extensively in deduction either explicitly (like for instance in Plaisted’s work) or
implicitly (like in the connection calculus).

4 In letters dated 4 August 1980 to both, Georg Kreisel and Dag Prawitz, the author
already pointed out the conjecture that the shortening effect of cuts is mainly due
to the redundancy (or “bureaucracy”) in derivations and would disappear when the
author’s derivational skeletons [4, p.190] were used instead. This conjecture raised
the curiosity and interest of Kreisel which he expressed in his response letter.

In a nutshell this early conjecture can be phrased as follows. Let P1, P2 denote
the premises of a cut with conclusion C. Let s1, s2 denote the skeletons of cutfree
derivations of P1, P2, resp., and s the skeleton of the derivation of C obtained from
the derivations of P1, P2 by the well-known process of cut-elimination. Then the
length of s is a polynomial function of that of s1, s2, ie. not an exponential function
as in the case of Gentzen-type derivations (which carry all that redundancy).

The conjecture stated in the present paper is even stronger than that earlier one
and, in the present terms, states that this function is even a linear one for some C′

obtained from C by applications of the (first-order version of the) FACTOR operation
to C, and even if Gentzen-type derivations would be taken instead of skeletons.
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“creativity”would of course still be needed as is already illustrated by our exam-
ple above where different sequences of applying FACTOR have led to different
proofs, so that the mechanism would have to explore the finite space of different
such sequences for the most suitable one (in the sense of the maximal entropy
value). A parallel approach to this exploration might eventually be taken into
account (similarly as in reality where more than one mathematicians are trying
to solve mathematical problems).

If this conjecture could be proved correct then an algorithmic realization of
this idea would still be complicated, especially when first-order unificational
mechanisms have to be integrated (into FACTOR etc.), thus posing a further
research challenge in this case. Even if the conjecture would turn out not to
be generally valid FACTOR would still remain an attractive reduction opera-
tion which has been neglected in current systems. Note thereby that, even if a
connection calculus for NCF would not be available or undesirable, one could
still apply FACTOR, then apply to the result a linear or quadratic transforma-
tion to clause form [7], and finally apply any proof method to the result, which
occasionally would be a more compressed formula than the original one.

Guglielmi’s calculus has motivated the question for the essence of proofs after
eliminating all bureaucracy caused by individual formal systems. The answer
given in [22] naturally is closely related to that given by the CM, namely that
this essence is basically given by the connection structure underlying a proof.
The paper in addition clarifies the effect of the cut rule in terms of a composition
operation on such structures (without addressing the questions underlying our
conjecture). This result might be helpful as well in the context of incorporating
the cut into proof search one way or another. But it does not yet attack the
first-order features as has been done within the CM with its skeleton concept
pointed out in footnote 3.

Another step towards compressing Gentzen’s sequent calculus has recently
been taken in [18] which introduces the so-called cirquent calculus. “Roughly
speaking, the difference between the two is that, while in Gentzen-style proof
trees sibling (or cousin, etc.) sequents are disjoint and independent sequences of
formulas, in cirquent calculus they are permitted to share elements.” In other
words, a proof is no more a tree of sequents but becomes a compressed tree-like
structure whereby different branches share joint parts. Such a calculus can be
sensible to resources and in fact it has evolved in the context of attempts to
develop a computational logic of the linear-logic kind. Whether or not computa-
tion and planning will be modelled in such a purely logical way in the future or
rather in the transitional way described in the previous section is independent
of the interesting compressional idea behind the cirquent calculus.

7 Search Strategies

Whatever formal system we might have chosen proofs in it cannot be found
without search. Any such proof search has two quite different parts. One consists
of a mechanism which is not really search in the sense of the word. Rather it
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combines a number of operations which are needed to test one single alternative
for success or failure. In contrast to this the other part consists of choosing true
alternatives where the wrong choice might well lead into a blind alley or at least
into a superfluous detour (in a confluent system). For instance if we think of a
tableau system in propositional logic for simplicity, it is the alternative branching
points which give rise to search in the true sense while the remaining steps are
rather straightforward. Let us refer to the sequential and the choice part to
distinguish the two in the following.

A lot of efforts in a variety of directions have been invested into dealing with
the choice part. One direction has been to deal with the alternatives in a parallel
way. Since always only a limited number of different processors are available
parallelization has the potential to provide some improvement but not a cure
to the underlying exponential explosion. Since the single processor machines
became so much more efficient they outraced the advantage of multiprocessor
machines in this application and will do so for some time to come. An exception
might be pursuing a finite (and small) number of alternatives in parallel like
those in the application of FACTOR described in the previous section.

A second direction of research tried to take advantage of the information
gathered in one alternative to be used also in another one in order at least not
to waste redundant efforts completely. Intelligent backtracking was a popular
technique in this direction. To some extent the same effect can be achieved with
compression as discussed above.

A third direction tried to enhance the chances for selecting the right alter-
native. Many attempts have been made in this regard, including some rather
näıve ones as seen from hindsight. Just think of the many so-called refinements
of resolution some of which were mere adhoc attempts based on evidence of a
few selected examples. Others were indeed based on solid theoretical arguments.
For instance, Setheo [24] featured a preference in its selection strategy based on
basic probabilistic arguments. However there could be many more preferences of
this sort but they are difficult to develop and integrate into the overall strategy.
It seems therefore that the ideal preference measure might be too complex to
develop by hand.

Faced with all these difficulties some people nurtured the hope that human
ingenuity might interact with systems in cases of difficult choices. I continue to
regard this as a vage hope. Human ingenuity fails to blossom in the complex
technical contexts and at states of our systems when these would need advice
most. Human advice should therefore be integrated into the way the problem to
be solved is stated upfront rather than investing in interactive systems and proof
planning approaches which require an interaction on a rather deep technical level.

For all these experiences the most promising perspectives are in an automatic
design of the search strategy based on experimental data. The technique for this
direction has been formally developed in [12] in the context of metaheuristics.
What is needed then is the integration of this technique into the framework of
theorem proving. Basically this amounts to learning the search strategy from
the data of successful proof search. It is to be expected that the resulting strat-
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egy depends upon the theory within which the proofs are to be searched for.
That is the strategy in a purely logical framework without special axioms will
presumably be different from one in, say, linear algebra.

I also believe that this way analogical reasoning will eventually be made possi-
ble in a practical sense. That is if the learned strategy used data from successful
proofs, it will succeed in finding analogical proofs by way of the learned strategy;
in other words, the analogy is coded into the strategy rather than in some logical
form. This fits well with the observation that strategies used by humans typi-
cally are fuzzy. For instance, in chess many such fuzzy rules can be learned from
textbooks. Similarly, in law such rules or strategic principles are common place
known under the term topoi . Although sometimes seemingly contradictory, they
are extremely helpful in human problem solving in chess, law, mathematics and
many other disciplines. Capturing them in precise rules seems nearly impossi-
ble while computationally learning such strategic principles appears a promising
perspective.

In human theorem proving examples play a prominent role. For instance,
in [29] the attention is focussing on mathematical proofs including psychological
phenomena like gazing at some structures or immediacy in recognizing truth.
It is therefore surprising that in current systems such kind of feature is hardly
ever present. It is well-known how examples can guide the proof search and
avoid blind alleys [7, pp. 143ff] but the technique has not found its way into
applications. The reference just given mentions as a possible reason for this fact
the problem of how to generate examples or counterexamples automatically for
a given theory (and gives references to respective approaches). Possibly it has
been overlooked that the technique could be used in a preprocessing manner
rather than by interrupting the proof search at certain choice points and query
the available examples for guidance. While such an interrupt does not fit into
the fast processing of modern proof systems, a preprocessing of this kind could
indeed easily and elegantly be integrated and this way approximate the human
way of mathematical proofs more closely.

Namely, as explained in the given reference examples require the open sub-
goals during a proof search to be satisfiable for the interpretations given by the
examples. The respective information could be collected prior to the proof search
for a number of examples and for each potential literal in the clauses of the the-
ory and stored along with the literals by way of an appropriate data structure.
During the actual proof search this information could then easily be checked and
the choice made appropriately. I consider the ignorance of this possibility to be a
major oversight on the side of the ATP community and its realization a project
of high priority.

8 Conclusions

This paper has explored the most important dimensions of the space of logical
research. In each of these dimensions we have pointed out opportunities for
future research which are deemed of great relevance for the success of the logical
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approach towards the grand goals of Intellectics. A list of these research proposals
has been given at the end of the Introduction.

The author shares the confidence with Luigia Aiello that the succeeding gener-
ation of researchers will be picking up these challenges and pursue their solutions
with the same enthusiasm as we did during the hey-days of our careers to the
benefit of humankind. I combine this confidence with the hope that society will
appreciate this work more than it did sofar and provide the logic talents with
a research environment appropriate for their work (eg. with a research institute
of the kind of a Max-Planck-Institute) which, like in Mathematics, requires an
extreme amount of concentration, certainly more so than in “softer” disciplines.
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Abstract. Sometimes it is pragmatically useful to prove a theorem by
contradiction rather than finding a direct proof. Some reductio ad absur-
dum arguments have made mathematical history and the general issue
if and how a proof by contradiction can be replaced by a direct proof
touches upon deep foundational issues such as the legitimacy of tertium
non datur arguments in classical vs. intuitionistic foundations.

In this paper we are interested in the pragmatic issue when and how to
use this proof strategy in everyday mathematics in general and in partic-
ular in automated proof planning. Proof planning is a general technique
in automated theorem proving that captures and makes explicit proof
patterns and mathematical search control. So, how can we proof plan an
argument by reductio ad absurdum and when is it useful to do so? What
are the methods and decision involved?

1 Introduction

Heuristic guidance plays a major role in mathematical problem solving. This
has been an issue in human search behavior for a mathematical proof, see, e.g.,
[17,20], as well as in artificial intelligence (see [16]) and in automated theorem
proving. Newell argued that Polya’s heuristics are beyond the current state of
the art in artificial intelligence, which today is no longer the case in general (see
[12]). However, it turned out that each of Polya’s heuristics actually represents
a whole class of related more specific heuristics.

Heuristics that are mainly domain-independent have been incorporated into
some early AI-systems for mathematical problem solving, most notably into
Gelernter’s geometry prover [8], Lenat’s AM system [9], and in Woody Bledsoe’s
work. Gelernter’s system used a given diagram to check the satisfiability of sub-
goals and assigned priorities to goals dependent on the expected length of their
solution. AM was based on general heuristics to search for new concepts and
conjectures.

The still dominating (purely logic-based) automated theorem provingparadigm
– mostly based on the resolution principle [18] – hardly uses any mathematical
knowledge or mathematically inspired heuristics and makes up for this deficiency
by its general refinements and ultra-fast search based on well-engineered repre-
sentational techniques (see [19], vol.II, chapter 26). Of course, a resolution-based
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system always searches for a refutation, i.e, using the insight from Herbrandt’s
Theorem, the theorem to be shown is negated and there is a proof once the system
derives the empty clause as the final contradiction.

The situation is different for proof planning systems [5], where the proof
steps are more general and more human-like holding the promise that traversing
the search spaces can be based on (human) mathematical principles. Therefore,
knowledge-based proof planning [10, 14, 15] uses extensive means for heuristic
guidance and mathematical control knowledge, which has to be acquired.

In this paper, we propose some manually acquired control knowledge typical
for theorems in an undergraduate textbook such as R.G. Bartle and D.R. Sher-
bert’s ’Introduction to Real Analysis’ [1] from which our examples are taken.
Our focus is on proofs by contradiction and this exercise serves the purpose to
see what knowledge is available, how it can be expressed, and, generally, to shed
more light on the use of domain-dependent mathematical control knowledge in
automated theorem proving based on proof planning.

Why is the control knowledge interesting that helps to select the proof by
contradiction strategy? A first answer is that although proofs by contradiction
are relatively frequent in mathematics, mathematicians make this choice usually
‘instinctively’ and do not reason about it explicitly. That is, we have to bring
this implicit knowledge to the surface and make it visible – for machines and
students alike. Secondly, since this is obviously a proof strategy that humans use
to their advantage, we like to give it to a machine as well.

2 Reductio ad Absurdum

Proofs by contradiction have a long history in mathematics and they were
used to advantage already in Greek mathematics. Well known is Euclid’s The-
orem, which states that there are infinitely many prime numbers. The proof
assumes 1 that this is not the case, i.e., the number of primes is finite. Let
p1, p2, . . . pn be all these finitely many primes and consider the number p =
p1 · p2 · . . . · pn. Now take the number p + 1. If this is a prime number, then it is
greater than any of the pi, which contradicts our assumption since it would be
a prime not yet among the assumed ones. Or else, p + 1 has a prime divisor, say
q, then q would have to be one of the pi and consequently q divides p + 1 and p,
which leads to a contradiction since q would also have to divide the difference
p + 1− p, which is 1.

Another famous proof, due to Hippasus from Metapontum, a student of
Pythagoras and member of the Pythagorean School shows that

√
2 is not ratio-

nal. Because of the geometrical interpretation of
√

2 (i.e., the diagonal in a square
of length 1) this problem had already puzzled Indian mathematicians two mil-
lenia b.c. and the Babylonian estimated

√
2 = 1·600+24·60−1+51·60−2+10·60−3

(which is about correct for the first five decimals) as recorded in a cuneiform
script from about 1800 b.c. We recapitulate the theorem and a proof.
1 Lets take this formulation for the purpose of explanation: as Michael Beeson has

pointed out, the proof is actually not necessarily by contradiction [2,3].
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Theorem.
√

2 is irrational.

Proof (Hippasus, 500 b.c.). Assume
√

2 is rational, i.e., there exist natural
numbers m and n with no common divisor such that

√
2 = m

n . Then n ·
√

2 = m
and, thus 2n2 = m2. Hence, m2 is even and since odd numbers square to odds,
m is even; say m = 2k. Then 2n2 = (2k)2 = 4k2, that is, n2 = 2k2. Thus, n2 is
even too, and so is n. That means that both n and m are even, which contradicts
the fact that they do not have a common divisor.

This is a particularly interesting theorem not only because the Pythagorean’s
– believing in a rational world order – drowned Hippasus as a punishment for
such offensive thinking but it was also posed as a challenge to ’the seventeen
provers of the world’: the results of this contest have been published in the
Springer lecture notes [24] to mark the 50th anniversary of the first theorem
ever, that was proven by a computer. 2 Our system participated in this contest
as well (see [24]) but a fully automated proof planning of the proof, remarkably
similar to the above proof of the Pythagorean School, was established a little
later by Omega and has now been published in [23].

Proofs by contradiction have become an issue in the foundational discussion
between classical versus intuitionistic mathematics. The above reasoning can be
formulated as

if Ax ∪ {A} � F and Ax ∪ {A} � ¬F then Ax � ¬A (1)

or alternatively as

ifAx ∪ {¬A} � F and Ax ∪ {¬A} � ¬F then Ax � A (2)

The difference is that in (1) we conclude from the axioms and A as well as
the contradiction {F,¬F} that ¬A holds. In contrast, the second formulation
states that we are allowed to conclude A from the axioms and ¬A as well as the
contradiction. Using the classical law:

if Ax � ¬¬A then Ax � A (3)

the above (1) and (2) collapse into the same kind of reasoning. This holds,
however, only, if we accept the tertium non datur postulate F ∨¬F from which
(3) follows. Intuitionism rejects this postulate and hence, this is not a valid form
of reasoning in intuitionism (see, e.g., [7]).

3 Knowledge-Based Proof Planning

Proof planning is a technique for theorem proving in which proofs are planned at
a higher level, where individual choices can be mathematically motivated by the
semantics of the domain. In particular, proof planning tackles theorems not only
2 Martin Davis’ program based on the decidable fragment of first order logic called

Presburger Arithmetic, showed the remarkable theorem that the sum of two even
numbers is again even.
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with logical operators but also by using domain knowledge and explicitly encoded
control [10]. However, a monolithic proof planner, in which the order of problem
solving operations is pre-defined does not take full advantage of the runtime knowl-
edge that is available from the mathematical domain. For instance, failure analysis
is a natural and important ingredient of mathematical proof construction.

Our experimentswithproof planning in the past decade indicate, that the search
process would benefit from more flexibility of choice [14] and more and better con-
trol knowledge for specific domains and mathematical techniques – such as proofs
by contradiction in real analysis – which is the subject of this paper.

The Ωmega project, which is essentially based on proof planning represents
one of the major attempts to build an all encompassing assistant tool for the
working mathematician, which combines interactive and automated proof con-
struction for domains with rich and well-structured mathematical knowledge.
The inference mechanism at the lowest level is an interactive theorem prover
based on a higher order natural deduction (ND) variant of a soft-sorted ver-
sion of Church’s simply typed λ-calculus [6]. While this represents the “machine
code” of the system, the user will seldom want to see, the search for a proof is
conducted at a higher level by a proof planning process.

Proof planning differs from traditional search-based techniques in automated
theorem proving not least with respect to its level of abstraction: the proof of a
theorem is planned at an abstract level where an outline of the proof is found
first. This outline, that is, the abstract proof plan, can be recursively expanded
with operators and tactics eventually down to a proof within the logical calculus.
The plan operators represent mathematical techniques familiar to a working
mathematician.

Knowledge-based proof planning [10,13] employs even more techniques from
artificial intelligence such as hierarchical planning, constraint solving and control
rules for meta-level reasoning. While the knowledge of a mathematical domain
represented by operators (called methods) and control rules is specific to the
mathematical field, the representational techniques and reasoning procedures
are general-purpose.

The methods (partially) describe changes of proof states by pre- and postcon-
ditions which are called premises and conclusions in the following. The premises
and conclusions of a method are formulae (more precisely, sequents) in a higher-
order language and the conclusions are considered as logically inferable from the
premises.

Hence, a mathematical theorem proving problem is expressed as a planning
problem whose initial state consists of the proof assumptions and whose goal
description consists of the conjecture. Proof planning searches for a sequence (or
a hierarchy) of instantiated methods, i.e. a solution plan, which transforms the
initial state with assumptions into a state containing the conjecture.

Methods, Control Rules, and Strategies in a Context. In order to make
the ingredients of proof planning more explicit, let us repeat what methods and
control rules contribute to proof planning and then extend the discussion to
strategies and contexts.
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Methods have been perceived by Alan Bundy as tactics augmented with pre-
conditions and effects, called premises and conclusions, respectively. A method
represents the inference of the conclusion from the premises. Backward methods
reduce a goal (the conclusion) to new goals (the premises). Forward methods, in
contrast, derive new conclusions from given premises.

For example, the following method ComplexEstimate is an essential ingredient
in epsilon-delta proofs of limit theorems.

method: ComplexEstimate(a, b, e1, ε)

premises (0), ⊕(1),⊕ (2), ⊕(3)

conclusions 	 L12

appl.cond
∃σ(subst(a, b) = σ)&
∃k, l(casextract(aσ, b) = (k, l)) & b = k ∗ aσ + l

proof schema

(0).Δ � |a| < e1 ()
(1). � |aσ| < ε/(2 ∗ V) (OPEN)
(2).Δ � |k| ≤ V (OPEN)
(3). � 0 < V (OPEN)
(4).Δ � |l| < ε/2 (OPEN)
L0. � b = b (Ax)
L1. � b = k ∗ aσ + l (CAS;L0)
. � . . . (. . .)
L12.Δ � |b| < ε (schema;L1,(3),

(0),(1),(2),(4))

This frame-like data structure should be read as follows: the method’s name is
ComplexEstimate and it has the parameters a, b, e1, ε. The premises are the lines
(0), (1), (2), and (3) which are schematically detailed in the proof schema slot.
The ⊕ in the premises slot indicates these are added as subgoals by the applica-
tion of the method. The conclusions is a goal schematically detailed in line L12
of the proof schema and the 	 indicates that it is removed by the application of
the method. The application condition is formulated in a meta-language and for
ComplexEstimate it expresses that a and b have to be unifiable by a substitu-
tion σ and b can be decomposed into a linear combination of the substituted a
(which is tested by a computer alegbra system). The slot proof schema contains
a sequence of (proof) lines that are introduced with the expansion of the method
and used in the final proof. V is a newly introduced (auxiliary) variable.

Control rules represent mathematical knowledge about how to proceed in a
particular mathematical situation, and they guide the proof planning process.
They can influence the planner’s behavior at choice points (e.g., which goal to
tackle next or which method to apply next) by preferring members of the list
of possible goals or of the list of possible methods. This way promising search
paths are preferred and the general search space can be pruned.

Methods and control rules are the main ingredients of current proof planning
systems, however, they do not always provide enough structure and flexibility
for the problem solving process as the past decade of experimentation revealed.
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First, there is a problem with the planning algorithm itself, which cannot be
decomposed into its main components nor can new techniques easily be added.

Secondly, the proof planning process is too uniform, irrespective of the current
context and independent of the kind of theorem to be shown.

For instance, if we want to prove a continuity theorem in the theory of analysis,
it makes a difference whether we prove it via limit theorems, via an epsilon-delta
technique, via converging sequences, or by contradiction which is the focus of this
paper. Every mathematician has a variety of different strategies at her disposal
to tackle such specific problems.

A Strategy as it is now used in our multi-strategy proof planning system
employs a specific subset of the search algorithms, methods and control rules that
are typical for the particular proof technique we want to simulate. For instance,
one strategy may use an external system for some computation, another one
may attack the problem with a completely different set of methods such as the
epsilon-delta techniques, the methods and control rules typically used for a proof
by induction or the methods and control rules for a proof by contradiction. It
may cooperate with another strategy from a different theory, or it may use a
different backtracking technique.

Meta-reasoning as to which strategy to employ on a problem introduces an
additional explicit choice point and, thus, the system searches at the level of
strategies as well.

All of this, however, is still in stark contrast to the situation of a mathemati-
cian who operates in a specific context which includes the current theory under
development, preferences, knowledge representation techniques tailored to the
specific context, definitions that are formulated in a way to serve the current
purpose, typical techniques to prove this particular theorem as well as tricks of
the trade typical for the field within which the theorem is stated. For example,
a theorem about a continuous function requires certain methods, control rules
and strategies to tackle its proof, which a student learns in the calculus courses,
whereas a theorem, say in group theory, requires a very different set of methods
and control, usually taught in an algebra class.The choice of either of them is
prior and above a strategy and determined by the current context. The notion
of a context provides a powerful structuring technique, in particular, for large-
scale applications of mathematical assistant systems; this is ongoing work in the
Omega group.

4 The Extended Limit Domain

The ‘Limit Domain’ is a well-known set of theorems to be shown by epsilon-
delta-proofs. This domain typically comprises limit theorems and theorems about
continuity. For example, the theorem that f is continuous at a, formulated as

limx→0(f(a + x)− f(a) = 0 → continuous(f, a).

has been shown by our system (see [15]).
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Another well-known example is the LIM+ theorem which was posed by Woody
Bledsoe as a challenge to (classical) automated theorem proving systems. It
states that the limit of the sum of two functions f and g equals the sum of their
limits. Hence there are two assumptions which define the limit of f and g.

∀ε1(0 < ε1 ⇒ ∃δ1(0 < δ1 ∧∀x1(|x1− a| > 0∧ |x1− a| < δ1 ⇒ |f(x1)− l1| < ε1)))
(4)

and

∀ε2(0 < ε2 ⇒ ∃δ2(0 < δ2∧∀x2(|x2−a| > 0∧|x2−a| < δ2 ⇒ |g(x2)− l2| < ε2))).
(5)

and the theorem is:

∀ε(0 < ε ⇒ ∃δ(0 < δ∧∀x(|x−a| > 0∧|x−a| < δ ⇒ |(f(x)+g(x))−(l1+l2)| < ε)))
(6)

This and many more open challenge problems in this domain have been solved
now with proof planning. Here is the proof of LIM+, first provided in [11]:

The system first decomposes the conjecture and the assumptions. Among
others, this yields the new assumptions 3 |f(vx1)−l1| < vε1 and |g(vx2)−l2| < vε2

and the two new goals 0 < vδ and |(f(cx) + g(cx)) − (l1 + l2)| < cε.4 The first
goal, 0 < vδ, is closed by the method TellCS which closes the goal and adds
it to the constraint store of the constraint solver CoSIE [25]. The second goal
|(f(cx) + g(cx)) − (l1 + l2)| < cε requires further decomposition, which is done
by ComplexEstimate [11]

In the concrete example LIM+, ComplexEstimate employs the new assump-
tion |f(vx1)− l1| < vε1 and yields four new goals:

ε1 <
cε

2 ∗ v
(7)

|1| ≤ v (8)
0 < v (9)

|g(cx)− l2| <
cε

2
(10)

(7), (8), (9) can be closed by TellCS. Goal (10) is reduced by a method called
Solve using the derived assumption |g(vx2) − l2| < vε2 and yields the subgoals
vε2 ≤ cε

2 and vx2 = cx which can be closed by the method TellCS.
When all goals are closed, the constraint solver CoSIE computes appropriate

instances for variables that are consistent with the collected constraints. In this
case, it generates the following instantiation:

3 Notation: Proof planning replaces quantified variables either by constants or place-
holder variables. The placeholder variable substituted for a quantified variable x
is denoted by vx. The constant substituted for a quantified variable x is denoted
by cx.

4 During the decomposition of the assumptions further goals are created and the
decomposition of the conjecture yields further assumptions are derived. However,
in order to illustrate the basic proof planning approach we ignore these details.
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vδ �→ min(cδ1 , cδ2), vε1 �→ cε

2 , vε2 �→ cε

2 . Note, that these happen to be the
same values that are used in a typical human proof of LIM+, say, in a standard
textbook such as [1]). (end of proof)

In the meantime, we investigated and solved many more problems from the
Extended Limit Domain whose problems are all the theorems, examples, and
exercises of two chapters of the introductory textbook for Real Analysis [1]
that deal with limits of sequences and limits of functions. For many of these
theorems there are several ways to prove them, e.g., epsilon-delta-proofs, proofs
using other limit theorems, and proofs involving the estimation of an upper
bound. The latter involves the use of the Dominance method. Dominance(an),
where the parameter (an) denotes a sequence converging to zero, reduces a goal
lim(xn) = l to the goal ∃k∀n(k ∈ N ∧ (n ∈ N → (n > k → |xn−l|

|an| < c))) for a
constant c. This is justified by the theorem that says

if there is a sequence (an) converging to zero, a constant number c, and a natural
number k such that for all n ≥ k holds |xn − l| < c · an, then lim(xn) = l.

Not without surprise there are also many theorems in Bartle and Sherbert
that are shown by contradiction, although in principle they could be proven
directly. But the authors found it simpler and esthetically more pleasing to do
otherwise.

5 Planning Proofs by Contradiction

In order to show the conjecture T under the assumptions A1, . . . An, a proof by
contradiction assumes ¬T and the proof assumptions A1, . . . , An and tries to
prove a contradiction F ∧ ¬F from these assumptions for some formula F .

In common undergraduate textbooks such as Bartle and Sherbert’s introduc-
tion to real analysis, this principle is used often whenever it is convenient. In the
past we looked at this textbook quite frequently for inspiration to proof plan-
ning and in the meantime we have solved (almost) all of these problems with
our system.

But there remained several proofs by contradiction: so the first question to be
answered is, under which conditions is a proof by contradiction appropriate. And
secondly, the difficulty and the ’creative trick’ in human proofs by contradiction
(unlike say in a refutation by resolution) is to find an appropriate fact F which
can be contradicted.

In order to solve the problems in Bartle and Sherbert we experimented with
control knowledge on when to prove a conjecture by contradiction and which
formula F to refute. In all the examples cited below we used the heuristic that
F is one of the assumptions (Ak). Now this is not much of a restriction, if
we include anything among the assumptions Ai. So, what we have in mind is
the common situation in a textbook, where the assumptions A1, . . . , An are
immediately given either in the theorem itself as its hypotheses or more or less
immediately in the chapter prior to the theorem, i.e., in the current context.
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Proofs by contradiction of this nature are now realized in our system by the
method Contradict(Ak), which has the parameter Ak.

Method : Contradict (Ak)
Premises L0, ⊕L3

Conclusions �L4

Parameter L0

Proof
Schema

(L0) � Ak ()
(L1) Δ � ¬T (Hyp)
(L2) Δ, L1 � ¬Ak (OPEN)
(L3) Δ, L1 � Ak ∧ ¬Ak (∧I; L0L2)
(L4) Δ � T (¬E; L1L3)

The 	L4 conclusion of the method indicates that the sequent in line L4, T , is
removed as a goal from the state when Contradict(Ak) has been applied. The
L0 premise which is not annotated indicates that the sequent of L0 has to be
an assumption in the state before Contradict(Ak) is applied. The ⊕L3 premise
indicates that the sequent Δ, L1 � Ak ∧ ¬Ak of line L3 in the Proof Schema is
added as a new subgoal to the state when Contradict(Ak) has been applied,
where Δ, L1 is the union of A1, . . . An and ¬T . The Proof Schema contains the
lines/nodes that are inserted into the partial proof plan when Contradict(Ak)
is expanded.

Now, when should this method be used in the proof planning process? Some
very general guidelines for choosing a proof by contradiction are given in [21] for
proofs in the natural deduction calculus of Wilfried Sieg. These guidelines say:
if you cannot derive a goal forwardly from the proof assumptions and if the goal
is a negation, disjunction, or existentially quantified formula, then try a proof
by contradiction. This means that first all possible forward proofs have to be
attempted and only when this fails, search for a proof by contradiction. This
control is, of course, not particularly efficient and in many cases it may even
lead to infinitely many attempts. However, setting a heuristic bound on these
attempts it works quite well in practice.

Many mathematical domains have domain-specific knowledge, which can be
exploited to control the application of the method Contradict. For instance,
in the Extended Limit Domain one would not try to prove a goal ¬(a < b) by
contradiction although it is a negation but rather rewrite this goal to b ≤ a using
knowledge that is specific for real numbers, or more generally for totally ordered
structures.

For the Extended Limit domain we define: an (in)equality is called simple,
if its lhs and rhs terms are constant expressions. ’Constant expressions’ contain
only variables (constants as opposed to placeholder variables) that do not de-
pend on the instantiations of other variables (i.e., variables introduced through
∀-elimiination in goals or ∃-elimination in assumptions). For instance, the ex-
pression cε replacing the ∀-quantified variable ε in the goal (6) is a constant,
whereas the expression replacing ∃-quantified δ is not. Vice versa, the expres-
sion introduced for ε1 in (4) is a placeholder variable whereas the expression cδ1

introduced for δ1 in (4) is constant.
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For proof planning in the Extended Limit domain we found the following two
heuristics sufficient to trigger a proof by contradiction

– If the goal is a simple equation or inequality, in which (preferably) at least
one constant represents a limit and if the goal is not entailed by (in)equality
assumptions, then prefer proof by contradiction.
The mathematical insight for this heuristic is that simple (in)equalities can
be satisfied by (finite) forward entailment (realized by the method AskCS,
which uses the constraint solver of the system to compute entailment). In
case the simple (in)equation is not finitely entailed, a proof by contradic-
tion provides an alternative. Mathematically, such an alternative is needed,
when a property of the elements of a sequence cannot be finitely transferred
to the corresponding property of the limit since this transfer requires an
infinitesimal process.

– Contradict will be applied at most once in the same branch of a proof plan.

These two heuristics are expressed in the following control rule.

IF goal-simple-ineq
AND not-yet-applied (Contradict)
AND all-ineqAssumptions-known

THEN prefer (AskCS
Contradict)

This control rule encodes the heuristic that, if the goal is a simple equation
or inequality and Contradict has not been applied in the current branch of the
proof plan already, and all entailment information is available, then the planner
should first try to check the entailment of the goal using the method AskCS and
if this fails, a proof by contradiction should be preferred.

We could test the entailment via a meta-predicate in the preconditions of
a control rule but instead this test is done in the application condition of the
method AskCS. Thereby we avoid duplication of work in case a proof by contra-
diction is unnecessary.

6 Results

We have collected all the theorems shown by contradiction in the textbook on
Real Analysis of Bartle and Sherbert and surprisingly the rather simple heuristic
above worked in most cases. Omega’s proof planner finds proofs by contradiction
inter alia for the following theorems:5

Theorem 3.1.5
A sequence of real numbers can have at most one limit.

This ‘uniqueness of limit’ theorem is shown in [1] with the following proof. Sup-
pose on the contrary that x′ and x′′ are both limits of X = (xn) and that x′ �= x′′.

5 The numbering is the same as that of the theorems in the textbook [1].
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We choose ε > 0 such that the ε-neighborhoods Vε(x′) and Vε(x′′) are disjoint,
that is, such that ε < 1

2 |x′ − x′′|). Now let K ′ and K ′′ be natural numbers such
that if n > K ′ then xn ∈ Vε(x′), and if n > K ′′ then xn ∈ Vε(x′′). However,
this contradicts the assumption that these ε-neighborhoods are disjoint. (Why?)
Consequently, we must have x′ = x′′.

The answer to the corresponding exercise question (Why) as well as the whole
proof is found by Omega in a similar way. The formula F that is refuted in the
proof of Bartle and Sherbert is ’the ε-neighborhoods are disjoint’.

The next theorem 3.2.4 is related to the dominance property mentioned in
section 4 and is used in [1] as the prerequisite for theorem 3.2.5. and theorem
3.2.6. all of which have been shown by contradiction without this prerequisite
with the proof planner.

Theorem 3.2.4
If (xn) is a convergent sequence and if for all n xn ≥ 0, then lim(xn) ≥ 0.

The formula F that gives the contradiction is F := xn ≥ 0

Theorem 3.2.5
If (xn) and (yn) are convergent sequences of real numbers and if xn ≤ yn, then
lim(xn) ≤ lim(yn).

Theorem 3.2.6
If (xn) is a convergent sequence and if a ≤ xn ≤ b, then a ≤ lim(xn) ≤ b.

The next theorem ‘assures us that the value L of the limit is uniquely determined,
when it exists. As this uniqueness is not part of the definition of limit, it must
be deduced.’ ([1], p.113).

Theorem 4.1.5
If f : A �→ R and if c is a cluster point of A, then f can have only one limit at c.

Here the formula F that gives the contradiction is obtained from ’the ε-
neigborhoods of L and L′ are disjoint (an assumption of a subproof).

The following is taken from the exercises in [1], chapter 4.1 aimed at the exper-
tise of a freshman.

Theorem 4.1.(3)
Let f : IR �→ IR and let c ∈ IR. If lim

x→0
f(x + c) = l1 and lim

x→c
f(x) = l2, then

l1 = l2.

The above sample is taken from many more theorems for which the proof planner
found a proof with the fixed set of methods and control rules we have collected
for this branch of mathematics (and reported elsewhere [11,14,?] except that
the above control rule capturing the heuristic for proof by contradiction has
been added. As a result, the theorems in the two chapters of the textbook [1]
that require the use the of method Contradict are recognized and handled
properly.
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7 Discussion

The restriction to experiments with theorems from analysis is certainly not a
principal one as these results apply in other areas of mathematics as well, where
proofs by contradiction are abundant. The Extended Limit Domain is already
a very rich one, in particular, when it comes to search spaces and the use of
domain-dependent knowledge and this ‘small world’ encapsulates many of the
problems from mathematical problem solving in general.

In particular, the search for the formula F that is finally used in the con-
tradiction is an ’AI-complete’ problem and many proofs by contradiction have
in fact become famous, because of an ingenious choice of F . An example is the
proof that Euler’s number e is not rational, which was shown by Leonhard Euler
in 1737. In fact, e is not only irrational but a transcendental number, which was
shown 150 years later by Charles Hermite. Euler’s proof reasons by contradiction
and assumes that e is a rational number and hence, can be represented as e = p

q
for some integers p and q. The contradiction follows from the fact that q! · e is
an integer, whereas its expansion

q! +
q!
1

+
q!
2

+
q!
3

+ . . . +
q!
q

+
q!

(q + 1)!
+

q!
(q + 2)!

+ . . . (11)

is not an integer, hence, e is irrational. So the ingenuity of this proof is to
construct the appropriate formula F that states that q! ·e is an integer and show
that the expansion of q! · e is not an integer.

However, as it is always possible to tune and set the dials of a system to prove
a theorem – no matter how famous and difficult – for which a proof is known
in the literature, the goal of our game is to take Woody Bledsoe’s criticism of
automated theorem proving seriously:

Automated theorem proving is not the beautiful process we know
as mathematics. This is ’cover your eyes with blinders and hunt
through a cornfield for a diamond-shaped grain of corn... Mathe-
maticians have given us a great deal of direction over the last three
millenia. Let us pay attention to it. (Woody Bledsoe, 1986)

’Nothing can be explained to a stone’ (McCarthy 1967) and in particular
’Nothing mathematically interesting can be told to a (resolution-based) auto-
mated theorem proving system’ is our mantra capturing this general issue. The
Omega system has been ’told’ one extra control rule and to our own suprise
this turned out to be sufficient to find many proofs by contradiction in [1]. But
no doubt things will not stay this way and we have to uncover stronger means
to the end of Reductio ad Absurdum arguments, in particular, more ingenious
ways to determine the formula F . This is the subject of ongoing research in the
Omega group.
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Abstract. Logic and object-orientation (OO) are competing ways of
looking at the world. Both view the world in terms of individuals. But
logic focuses on the relationships between individuals, and OO focuses
on the use of hierarchical classes of individuals to structure information
and procedures. In this paper, I investigate the similarities and differ-
ences between OO and abductive logic programming multi-agent systems
(ALP systems) and argue that ALP systems can combine the advantages
of logic with the main benefits of OO. In ALP systems, relationships be-
tween individuals are contained in a shared semantic structure and agents
interact both with one another and with the environment by performing
observations and actions. In OO systems, on the other hand, relation-
ships are associated with objects and are represented by attribute-value
pairs. Interaction between objects is performed by sending and receiving
messages. I argue that logic can be reconciled with OO by combining
the hierarchical, modular structuring of information and procedures by
means of objects/agents, with a shared semantic structure, to store re-
lationships among objects/individuals, accessed by observations and ac-
tions instead of by message passing.

Keywords: object-orientation, logic programming, Linda.

1 Introduction

There was a time in the 1980s when it seemed that Computational Logic (CL)
might become the dominant paradigm in Computing. By combining the declar-
ative semantics of logic with the computational interpretation of its proof proce-
dures, it could be applied to virtually all areas of Computing, including program
specification, programming, databases, and knowledge representation in Artifi-
cial Intelligence.

But today it is Object-Orientation (OO), not Logic, that dominates every as-
pect of Computing from modelling the system environment, through specifying
system requirements, to designing and implementing the software and hard-
ware. Like CL, OO owes much of its attraction, not only to its computational
properties, but also to its way of thinking about the world. If these attractions
have real substance, then they potentially undermine not only CL’s place inside
Computing, but also its way of modelling and reasoning about the world outside
Computing.

O. Stock and M. Schaerf (Eds.): Aiello Festschrift, LNAI 4155, pp. 59–82, 2006.
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The aim of this paper is to try to understand what makes OO so attractive
and to determine whether these attractions can be reconciled with CL, both
in Computing and in the wider world. I will argue that logic-based multi-agent
systems can combine the advantages of CL with the main benefits of OO.

I will illustrate my argument by using abductive logic programming (ALP)
multi-agent systems [14]. However, most of the argument applies to more gen-
eral logic-based multi-agent systems, and even to heterogeneous systems that
use different programming languages, provided their external interfaces can be
viewed in logical terms.

ALP multi-agent systems (ALP systems, in short) are semantic structures,
consisting of individuals and relationships, as in the conventional semantics of
classical logic. However, in ALP systems, these structures can change state, in
the same way that the real world changes state, destructively, without remem-
bering its past. Some individuals in the structure are agents, which interact
with the world, by observing the world and by performing actions on the world.
Other individuals passively undergo changes performed by agents, and still other
individuals, like numbers, are immutable and timeless.

ALP agents, which are individuals in the ALP semantic structure, also have
an internal, syntactic structure, consisting of goals and beliefs, which they use to
interact with the world. Their beliefs are represented by logic programs, and their
goals are represented by integrity constraints. Their observations and actions are
represented by abducible (undefined) predicates.

I argue that such logic-based multi-agent systems share many of the attrac-
tions of OO systems. In particular, they share with objects the view that the
world consists of individuals, some of which (objects or agents) interact with
other individuals and change the state of the world. However, whereas in OO
systems relationships among individuals are associated with objects and are
represented as attribute-value pairs, in ALP systems relationships belong to the
semantic structure of the world.

Both agents in ALP systems and objects in OO systems encapsulate their
methods for interacting with the world, hiding their implementation details from
other agents and objects. Both agents and objects can inherit their methods
from more general classes of agents or objects. Whereas objects use methods
implemented in conventional, imperative programming languages, ALP agents
use methods implemented by means of goals and beliefs in logical form. The
methods used by ALP agents have both a procedural behaviour, as well as a
declarative semantics. In the declarative semantics, the goals and beliefs of an
agent have a truth value in the semantic structure that is the ALP system as a
whole. Normally, beliefs that are true and goals that can be made true are more
useful to an agent than ones that are false1.

Both ALP systems and OO systems share a local notion of change, in which
changes can take place in different parts of the world locally, concurrently and
independently. This local notion of change contrasts with the global notion that

1 A false belief can be more useful than a true belief, if the truth is too complicated
to use in practice.
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is prevalent in most logical treatments, including the possible world semantics
of modal logic and the situation calculus. The global notion of change is useful
for theoretical purposes, but the local notion is more useful both as a model of
the real world and as a model for constructing artificial worlds.

ALP agent systems differ from OO systems in one other important respect:
Whereas objects interact by sending and receiving messages, agents interact by
observing and performing actions on the shared semantic structure. This seman-
tic structure acts as a shared environment, similar to the blackboard in a black-
board system [9] and to the tuple-space in a Linda programming environment
[10]. In the same way that Linda processes can be implemented in different and
heterogeneous programming languages, the methods used by ALP agents can
also be implemented in other programming languages, provided their externally
observed behaviour can be viewed in logical terms.

In the remainder of the paper, I will first introduce ALP systems in greater
detail and then distinguish between the semantic and syntactic views of OO
systems. I will then compare OO systems and ALP systems by investigating
how each kind of system can be simulated by the other. The directness of these
simulations is the basis for the comparison of the two approaches. The simula-
tions are informal and should be viewed more as illustrations than as outlines of
formal theorems.

2 The Logical Way of Looking at the World

In logic there is a clear distinction between syntax and semantics. Syntax is con-
cerned with the grammatical form of sentences and with the inference rules that
derive conclusion sentences from assumption sentences. Semantics is concerned

Fig. 1. The logical view
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with the individuals and relationships that give sentences their meaning. The
relationship between syntax and semantics is pictured roughly in figure 1.

The distinction between atomic sentences and the semantic relationships to
which they refer is normally formalised by defining an interpretation function,
which interprets constant symbols as naming individuals and predicate symbols
as naming relations. However, it is often convenient to blur the distinction by
restricting attention to Herbrand interpretations, in which the semantic structure
is identified with the set of all atomic sentences that are true in the structure.
However, the use of Herbrand interpretations can sometimes lead to confusion, as
in the case where a set of atomic sentences can be considered both semantically
as a Herbrand interpretation and syntactically as a set of sentences. Sometimes,
to avoid confusion, atomic sentences understood as semantically as relationships
are also called facts.

For notational convenience, we shall restrict our attention to Herbrand inter-
pretations in the remainder of the paper. However, note that, even viewing Her-
brand interpretations as syntactic representations, there is an important sense in
which they differ from other syntactic representations. Other syntactic represen-
tations can employ quantifiers and logical connectives, which generalize, abstract
and compress many atomic sentences into a smaller number of sentences, from
which other sentences, including the atomic sentences, can be derived.

2.1 ALP Agents

Traditional logic is often accused by its critics of being too concerned with static
states of affairs and of being closed to changes in the world. The first of these
criticisms has been addressed in various ways, either by making the semantics
more dynamic, as in the possible worlds semantics of modal logic, or by making

Fig. 2. Observation-thought-decision-action cycle in ALP agents
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the syntax more expressive by reifying situations or events, as in the situation
or event calculus.

The second of these criticisms has been addressed by embedding logic in
the thinking component of the observation-thought-decision-action cycle of an
intelligent agent, for example as in ALP agents, pictured in figure 2.

In ALP agents, beliefs are represented by logic programs and goals are repre-
sented by integrity constraints. Integrity constraints are used to represent a variety
of kinds of goals, including maintenance goals, prohibitions, and condition-action
rules. Abducible predicates, which are not defined by logic programs, but are re-
strictedby the integrity constraints, are used to represent observations and actions.

ALP agents implement reactive behaviour, initiated by the agent’s observa-
tions, using forward reasoning to trigger maintenance goals and to derive achieve-
ment goals. They also implement proactive behaviour, initiated by achievement
goals, using backward reasoning to reduce goals to sub-goals and to derive ac-
tion sub-goals. In addition to reactive and proactive thinking, ALP agents can
also perform pre-active thinking [?], using forward reasoning to simulate can-
didate actions, to derive their likely consequences, to help in choosing between
them.

2.2 An ALP Agent on the London Underground

Passengers on the London underground have a variety of goals - getting to work,
getting back home, going out shopping or visiting the tourist attractions. In addi-
tion, except for renegade terrorists, everyone is also concerned about safety. This
can be represented by goals in logical form, which might include the (simplified)
goal:

If there is an emergency then I get help.

To recognize when there is an emergency and to find a way to get help, a pas-
senger can use beliefs2 in logic programming form:

I get help if I alert the driver.
I alert the driver if I press the alarm signal button.

There is an emergency if there is a fire.
There is an emergency if one person attacks another.
There is an emergency if someone becomes seriously ill.
There is an emergency if there is an accident.

The beliefs about getting help are declarative sentences, which may be true or
false about the effect of actions on the state of the world. The beliefs about
emergencies are also declarative sentences, but they are simply true by def-
inition, because the concept of emergency is an abstraction without a direct
interpretation in concrete experience.

In ALP, beliefs can be used to reason forwards or backwards. Forward rea-
soning is useful for deriving consequences of observations and candidate actions.
2 For simplicity, this representation of goal and beliefs ignores the element of time.
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Backward reasoning is useful for reducing goals to sub-goals. A combination of
forward and backward reasoning in the London underground example is illus-
trated in figure 3.

The mental activity of an ALP agent is encapsulated in the agent, hidden
from an observer, who can see only the agent’s input-output behaviour. In the
case of the London underground passenger, this behaviour has the logical form:

If there is a fire, then the passenger presses the alarm signal button.

As far as the observer is concerned, this externally visible, logical form of the
passenger’s behaviour could be implemented in any other mental representation
or programming language.

Fig. 3. ALP combines forward and backward reasoning

2.3 ALP Agent Systems

Similarly to the way that agents interact with other individuals in real life, ALP
agents interact with other individuals embedded in a shared environment. This
environment is a semantic structure consisting of individuals and relationships.
Some of the individuals in the environment are agents of change, while others
undergo changes only passively. To a first approximation, we can think of an
ALP environment as a relational database, which changes destructively as the
result of agents’ actions.

The environment that ALP agents share is a dynamic structure, in which
relationships come and go as the result of actions, which occur locally, concur-
rently and independently of other actions. Because this environment is a semantic
structure, relationships can appear and disappear destructively, without the en-
vironment having to remember the past. In the London underground example,
the observations and actions of the passenger, train driver and fire department
agents are illustrated in figure ??. Instead of standing apart and, as it were,
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above the world, as pictured in figures 1-3, the agents are embodied within it.
Their actions change the shared environment by adding and deleting facts (or
relationships):

The passenger’s action of pressing the alarm signal button
deletes the fact that the alarm is off and
adds the fact that the alarm is on.

The driver’s action of calling the fire department
adds the fact that the fire department has been called.

The fire department’s action of putting out the fire
deletes the fact that there is a fire in the train.

Fig. 4. An ALP system

The driver’s action of calling the fire department can be viewed as sending the
fire department a message, in the form of a fact that is stored in the shared
environment. The fire department observes the message and, if it chooses, may
delete it from the environment. Other agents may be able to observe the message,
as long as it remains in the environment, provided they can access that part of
the environment.

Notice that, just as in the case of a single agent, an observer can see only the
agents’ external behaviour. In this case also, that behaviour has a logical form:

If there is a fire, then the passenger presses the alarm signal button.
If the alarm has gone off, then the driver calls the fire department.
If a fire is reported, then the fire department puts out the fire.

These implications can be combined with sentences describing the effect of the
agents’ actions on the world:

If a person presses the alarm signal button, then the alarm goes off.
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If a person calls the fire department, then a fire is reported.

to derive, as a logical consequence, the input-output behaviour of the combined
system as a whole:

If there is a fire, then the fire department puts out the fire.

3 Object-Oriented Systems

Despite the dominant position of OO in Computing, there seems to be no clear
definition or consensus about its fundamental concepts. One recent attempt to
do so [3] identifies inheritance, object, class, encapsulation, method, message
passing, polymorphism, and abstraction, in that order, as its most frequently
cited features. However, the relative importance of these concepts and their
precise meaning differs significantly from one OO language to another. This
makes comparison with logic very difficult and prone to error. Therefore, the
claims and comparisons made in this paper need to be judged and qualified
accordingly.

Nonetheless, viewed in terms of the concepts identified in [3], the argument
of this paper can be simply stated as claiming that all of these concepts are
either already a feature of ALP systems (and other, similar logic-based multi-
agent systems) or can readily be incorporated in them, with the exception of
message-passing.

OO shares with logic the view that the world consists of individuals, some of
which (objects or agents) interact with other individuals and change the state
of the world. In OO, objects interact with one another by sending and receiv-
ing messages, using encapsulated methods, which are hidden from external ob-
servers, and which are acquired from more general classes of objects, organised
in hierarchies.

Whereas ALP agents use goals and beliefs to regulate their behaviour, ob-
jects use methods that are typically implemented by means of imperative pro-
gramming language constructs. An object-oriented system corresponding to the
multi-agent system of figure 4 is pictured in figure 5. Both ALP systems and OO
systems can be viewed as semantic structures, in which the world is composed
of individuals that interact with one another and change state. However, there
are important differences between them:

1. The treatment of individuals. In ALP systems, individuals are distinguished
between active individuals, which are agents, and other individuals, which
are passive. However, in OO systems, both kinds of individuals are treated
equally as objects.

2. The treatment of attributes and relationships. In the semantic structures of
logic, individuals have externally visible attributes and relationships with
other individuals. Attributes of individuals are treated technically as a spe-
cial case of relationships.
In OO systems, attributes of objects are internalised. Moreover, relationships
between objects are treated as attributes and similarly internalised. Either



Computational Logic in an Object-Oriented World 67

Fig. 5. An object-oriented system corresponding to the multi-agent system of figure 4

one of the objects in a relationship has to be treated as its “owner”. Or the
relationship needs to be represented redundantly among several “owners”.

3. The way of interacting with the world. ALP agents interact with the world by
observing the current state of the world and by performing actions to change
it. A relationship between several individuals can be accessed in a single obser-
vation; and a single action can change the states of several relationships.
Objects in OO systems, on the other hand, interact with one another rather
than with a separate semantic world structure. They do so by sending and re-
ceiving messages. But the concept of “message” is not defined. In many cases,
messages are used to send information from one object to another. In other
cases, they are used to request other objects for help in solving sub-goals. But
in the general case, messages can be used for any, arbitrary purpose.

3.1 Object-Oriented Systems as Syntactic Structures

The relationship between logic and objects can be viewed in both semantic
and syntactic terms. However, it is the syntactic structuring of information and
methods into encapsulated hierarchies of classes of objects that is perhaps the
most important reason for the practical success of OO in Computing.

In ALP systems, information and methods are syntactically formulated by
means of goals and beliefs in logical form. In OO systems, methods are typically
implemented in an imperative language. In both cases, internal processing is en-
capsulated, hidden from other agents or objects, and performed by manipulating
sentences in a formal language.

In logic, there is a well understood relationship between syntax and semantics,
in which declarative sentences are either true or false. In ALP agents, declarative
sentences representing an agent’s goals and beliefs are similarly true or false in
the semantic structure in which the agent is embedded.
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In OO systems, where methods are implemented in imperative languages,
there is no obvious relationship between the syntax of an object’s methods and
the semantic structure of the OO system as a whole. In part, this is because
purely imperative languages do not have a simple truth-theoretic semantics; and,
in part, because messages do not have a well defined intuitive interpretation.

3.2 Natural Language and Object-Orientation

We can better understand the nature of OO syntax by comparing both logical
syntax and OO syntax with natural language. Comparing logic with natural
language, one important difference is that sets of sentences in logic can be written
in any order, without affecting their meaning. However, in natural language the
order in which sentences are written makes an important contribution, not only
to their meaning, but also to their intelligibility.

In contrast with logic, but similarly to natural language, OO has a major
concern with the way that sentences are structured. OO associates methods
and attribute-value pairs with the objects they concern. Natural languages, like
English, employ a similar form of object-orientation by using grammatical struc-
tures in which the beginning of a sentence indicates a topic and the following
part of the sentence expresses a comment about the topic. This kind of struc-
ture often coincides with, but is not limited to, the grammatical structuring of
sentences into subjects3 and predicates.
Consider, for example, the pair of English sentences [6, p. 130]:

The prime minister stepped off the plane.
Journalists immediately surrounded her.

Both sentences are formulated in the active voice, which conforms to the guide-
lines for good writing style advocated in most manuals of English.

The two sentences refer to three individuals/objects, the prime minister (re-
ferred to as “her” in the second sentence), journalists and the plane. The prime
minister is the only object in common between the two sentences. So, the prime
minister is the object that groups the two sentences together. However, the topic
changes from the prime minister in the first sentence to the journalists in the
second.

Now consider the following logically equivalent pair of sentences:

The prime minister stepped off the plane.
She was immediately surrounded by journalists.

Here the two sentences have the same topic, which is the individual/object they
have in common. However, the second sentence is now expressed in the passive
voice.

Despite the fact that using the passive voice goes against the standard guide-
lines of good writing style, most people find the second pair sentences easier
3 In this analogy between objects and topics, objects are more like the grammatical

subjects of sentences than the grammatical objects of sentences.
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to understand. This seems to suggest that people have a preference for organ-
ising their thoughts in object-oriented form, which is even stronger than their
preference for the active over the passive voice.

However, OO is not the only way of structuring sentences. Both linguists and
proponents of good writing style have discovered a more general way, which
includes OO as a special case. As Joseph Williams [22] argues:

Whenever possible, express at the beginning of a sentence ideas already stated,
referred to, implied, safely assumed, familiar, predictable, less important,
readily accessible.

Express at the end of a sentence the least predictable. The newest, the most
important, the most significant information, the information you almost cer-
tainly want to emphasize.

This more general way of structuring sentences also includes the use of logical
form to make sets of sentences easier to understand. For example:

A if B.
B if C.
C if D.
D.

Or:

D.
If D then C.
If C then B.
If B then A.

3.3 Classes in Object-Oriented Systems and Sorts in Logic

Perhaps the most important practical feature of OO systems is the way in which
objects acquire their methods from more general classes of objects. For example,
an individual passenger on the underground can obtain its methods for dealing
with fires from the more general class of all humans, and still other methods
from the class of all animals.

Thus, classes can be organised in taxonomic hierarchies. Objects acquire their
methods from the classes of which they are instances. Similarly sub-classes can
inherit their methods from super-classes higher in the hierarchy, possibly adding
methods of their own.

However, classes and class hierarchies are neither unique nor original features
of OO systems. Classes correspond to types or sorts in many-sorted logics, and
hierarchies of classes correspond to hierarchies of sorts in order-sorted logics.

Sorts and hierarchies of sorts can be (and have been) incorporated into logic
programming in many different ways. Perhaps the simplest and most obvious
way is by employing explicit sort predicates, such as Passenger(X) or Human(X),
in the conditions of clauses, together with clauses defining sort hierarchies and
instances, such as:
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Human(X) if Passenger(X)
Passenger(john).

However, even unsorted logic programs already have a weak, implicit hierarchical
sort structure in the structure of terms. A term f(X), where f is a function
symbol, can be regarded as having sort f(). The term f(g(X)), which has sort
f(g()) is a sub-sort of f(), and the term f(g(a)), where a is a constant symbol is
an instance of sort f(g()). Two terms that differ only in the names of variables,
such as f(g(X)) and f(g(Y )) have the same sort. Simple variables, such as X and
Y, have the universal sort. Both explicitly and implicitly sorted logic programs
enjoy the benefits of inheritance4.

Although sorts and inheritance are already features of many systems of logic,
OO goes further by grouping sentences into classes. Sentences that are about
several classes, such as the methods for humans dealing with fire, have to be
associated either with only one of the classes or they have to be associated with
several classes redundantly5.

3.4 Object-Oriented Logic Programming

We can better understand the relationship between OO systems and ALP sys-
tems if we see what is needed to transform one kind of system into the other.
First, we will show how, under certain restrictions, logic programs can be trans-
formed into OO systems. Later, we will show how to extend this transformation
to ALP systems, and then we will show how to transform OO systems into ALP
systems. In each of these cases, the OO system is an idealized system, corre-
sponding to no specific OO language in particular. Thus the claims made about
these transformations need to be qualified by this limitation.

OO grouping of sentences into classes can be applied to any language that has
an explicit or implicit class structure, including sentences written in formal logic.
However, as we have just observed, an arbitrary sentence can be about many
different individuals or classes, making it hard to choose a single individual or
class to associate with the sentence.

But it is easier to choose a class/sort for clauses in logic programs that define
input-output predicates. For such programs, it can be natural to nominate one
of the input arguments of the conclusion of a clause (or, more precisely, the sort
of that argument) to serve as the “owner” of the clause. The different instances
4 Inheritance can be inhibited by the use of abnormality predicates. For example, the

clauses Fly(X) if Bird(X) and not Abnormal(X), Bird(X) if Penguin(X), Walk(X) if
Penguin(X), Swim(X) if Penguin(X), Abnormal(X) if Penguin(X) inhibit the inher-
itance of flying.

5 The problem of choosing a class or class hierarchy to contain a given sentence is
similar to the problem of choosing a folder to store a file. Search engines like Google
make it possible to store information in one structure but to access it without ref-
erence to the place it is stored. It also makes it possible to store information in an
unstructured way, without any penalty in accessing it. Email clients offer similar,
but more limited facilities to order emails by such different attributes as sender,
date, subject, size, etc.
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of the nominated input argument behave as sub-classes and objects, which use
the clause as a method to reduce goals to sub-goals.

Whereas arbitrary messages in OO systems may not have a well-defined intu-
itive interpretation, messages in OO systems that implement input-output logic
programs either send requests to solve goals and sub-goals or send back solu-
tions. An object responds to a message requesting the solution of a goal by using
a clause to reduce the goal to sub-goals. The object sends messages, in turn, re-
questing the solution of the sub-goals, to the objects that are the owners of the
sub-goals. When an object solves a goal or sub-goal, it sends the solution back
to the object that requested the solution.
More formally, let a logic program contain the clause:

P0(o0, t01, . . . , t0m0) if P1(o1, t11, . . . , t1m1) and . . . and Pn(on, tn1, . . . , tnmn)

where, without loss of generality, the sort of the first argument of each predicate
is selected as the owner of the clause. We also call that argument the “owner
argument”. Assume also that each such owner argument oi is an input argument
in the sense that at the time the predicate is invoked, as a goal or sub-goal for
solution, the argument oi is instantiated to some object (variable-free term).

Assume for simplicity that the sub-goals in the body of the clause are executed,
Prolog-fashion, in the order in which they are written. Then the use of the clause
to solve a goal of the form P0(o′0, t

′
01, . . . , t

′
0m0), where o′0 is a fully instantiated

instance of o0 , is simulated by some sender object o sending the goal in a message
to the receiver object o′0 and by the receiver object:

0. matching the goal with the head of the clause, obtaining some most general
unifying substitution Θ0

1. sending a message to object o1Θ0 to solve the goal P1(o1, t11, . . . , t1m1)Θ0

2. receiving a message back from o1Θ0 reporting that the goal
P1(o1, t11, . . . , t1m1)Θ0 has been solved with substitution Θ1
. . .

2n. sending a message to object on Θ0Θ1 . . . Θn−1 to solve the goal
Pn(on, tn1, . . . , tnmn)Θ0Θ1 . . . Θn−1

2n+1. receiving a message back from on Θ0Θ1 . . .Θn−1 that the goal
Pn(on, tn1, . . . , tnmn)Θ0Θ1 . . . Θn−1 has been solved with substitution Θn

2n+2. sending a message back to the sender object o that the goal
P0(o0, t01, . . . , t0m0)Θ0 has been solved with substitution Θ0Θ1 . . .Θn−1Θn.

Notice that objects oi and oj need not be distinct. The special case of an object
sending a message to itself can be short circuited by the object simply solving
the sub-goal locally.

If n = 0, then the clause represents a relationship with other objects. The
relationship is represented only once, associated with the owner object. All such
relationships, like all other clauses, are encapsulated in their owner objects and
can be accessed by other objects only by sending and receiving messages.
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For example, the atomic clauses:

Father(john, bill)
Father(john, jill)
Mother(mary, bill)
Mother(mary, jill)

would be encapsulated within the john and mary objects. The goal Father(john,
X) sent to the object john would receive two messages X = bill and X = jill in
return.

It would not be possible with this simple implementation to find out who are
the parents of bill or jill. This problem can be solved by redundantly nominating
more than one argument to serve as the owner of a clause.

Notice that methods can be public or private. Public methods are ones that
are known by other objects, which those objects can invoke by sending messages.
Private methods are ones that can only be used internally.

3.5 Polymorphism

The mapping from input-output logic programs to OO systems illustrates poly-
morphism. In the context of OO systems, polymorphism is the property that the
“same” message can be sent to and be dealt with by different classes of objects;
i.e. except for the name of the recipient, everything else about the message is
the same:

P (o, t1, . . . , tm) and P (o′, t1, . . . , tm).

Thus different objects can respond to the same message using their own different
methods.

Like classes and class hierarchies, polymorphism is neither a unique nor an
original feature of OO systems. In the context of logic, polymorphism corre-
sponds to the fact that the same predicate can apply to different sorts of indi-
viduals.

3.6 Aspects as Integrity Constraints in Abductive Logic
Programming

The mapping from logic programs to OO systems highlights a number of features
of logic programming that are not so easily addressed in OO systems. I have
already mentioned the problem of appropriately representing relationships, as
well as the problem about representing more general logic programs that do not
have input-output form. However, a problem that has attracted much attention
in software engineering, and which is addressed in ALP, is how to represent cross-
cutting concerns, which are behaviours that span many parts of a program, but
which can not naturally be encapsulated in a single class.
Integrity constraints in ALP have this same character. For example, the concern:

If a person enters a danger zone,
then the person is properly equipped to deal with the danger.
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cuts across all parts of a program where there is a sub-goal in which a person
needs to enter a danger zone (such as a fireman entering a fire). In ALP, this
concern can be expressed as a single integrity constraint, but in normal LP it
needs to scattered throughout the program, by adding to any clause that contains
a condition of the form:

a person enters a danger zone

an additional condition:

the person is properly equipped to deal with the danger.

In software engineering the problem of dealing with such cross-cutting concerns
is the focus of aspect-oriented programming (AOP) [11]. AOP seeks to encapsu-
late such concerns through the introduction of a programming construct called
an aspect. An aspect alters the behavior of a program by applying additional
behavior at a number of similar, but different points in the execution of the
program.

Integrity constraints in ALP give a declarative interpretation to aspects. ALP
provides the possibility of executing such integrity constraints as part of the process
of pre-active thinking [?], to monitor actions before they are chosen for execution.
This is like using integrity constraints to monitor updates in a database, except
that the updates are candidates to be performed by the program itself.

It is also possible to transform logic programs with integrity constraints into
ordinary logic programs without integrity constraints [13,21]. This is similar to
the way in which aspects are implemented in AOP. However, whereas in AOP
the programmer needs to specify the “join points” where the aspects are to be
applied, in logic programming the transformations of [13,21] can be performed
automatically by matching the conditions of integrity constraints with conditions
of program clauses.

4 The Relationship Between OO Systems and ALP
Systems

The mapping from input-output logic programs to OO systems can be extended
to more general ALP agent systems, and a converse mapping is also possible.
These mappings exploit the correspondence between agents and objects, in which
both are viewed semantically as individuals, mutually embedded with other in-
dividuals in a common, dynamically changing world. Both agents and objects
process their interactions with the world, by manipulating sentences in a formal
language, encapsulated, and hidden from other individuals.

The biggest difference between logic and objects, and therefore between ALP
agents and objects, is their different views of semantic structure. For logic, the
world is a relational structure, consisting of individuals and relationships that
change over time. Such changes can be modeled by using the possible world
semantics of modal logic or by treating situations or events as individuals, but
they can also be modeled by using destructive assignment.
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With destructive assignment, the world exists only in its current state. Agents
perform actions, which initiate new relationships (by adding them) and termi-
nate old relationships (by deleting them), without the world remembering its
past. The agents themselves and their relationships with other individuals are a
part of this dynamically and destructively changing world.

ALP agents, as well as undergoing destructive changes, can also represent
changes internally among their beliefs. Using such syntactic representations of
change, they can represent, not only the current state of the world, but also past
states and possible future states. We will return to this use of logic to represent
change later in the paper.

Whereas logic distinguishes between changes that take place in the seman-
tic structure of the world and changes that are represented syntactically in an
agent’s beliefs, objects do not. In OO systems, all changes of state are associ-
ated with objects. It makes it easy for objects to deal with changes of values of
attributes, but more difficult for them to deal with changes of relationships.

The different ways in which logic and objects view the world are reflected
in the different ways in which they interact with the world. In OO systems,
because the state of the world is distributed among objects as attribute-value
pairs, the only way an object can access the current state is by accessing the
attribute-value pairs of objects. The only way an object can change the current
state is by changing the attribute-value pairs of objects. In some OO languages
these operations are carried out by sending and receiving messages. In other OO
languages they are performed directly.

ALP agents, on the other hand, interact by observing and acting on the ex-
ternal world. These interactions typically involve observing and changing rela-
tionships among arbitrarily many individuals, not only attributes of individual
objects. This way of interacting with the world is similar to the way that pro-
cesses use the Linda tuple-space as a shared environment and to the way that
experts use the blackboard in a blackboard expert system.

4.1 Transformation of ALP Systems into OO Systems

Agents. Our earlier transformation of input-output logic programs into OO sys-
tems implicitly treats the owners of clauses as agents. In this transformation,
the owner of a clause/belief is selected from among the input arguments of the
conclusion of the clause. However, in ALP systems, goals and beliefs are already
associated with the agents that are their owners. In transforming ALP systems
into OO systems, therefore, it is a simple matter just to treat agents as objects
and to treat their goals and beliefs as the objects’ methods. In some cases, this
transformation of agents into objects coincides with the transformation of input-
output logic programs into OO systems. However, in many other cases, it is more
general.

The ALP semantic structure. An agent’s beliefs include its beliefs about rela-
tionships between individuals, expressed as unconditional clauses. The individ-
uals included in these relationships need not explicitly include the agent itself,
as in the case of a passenger’s belief that there is a fire in a train. These be-



Computational Logic in an Object-Oriented World 75

liefs can be used as methods to respond to requests for information from other
agents/objects.

In addition to these syntactic representations of relationships as beliefs, an
ALP system as a whole is a semantic structure of relationships between indi-
viduals. This semantic structure can also be transformed into objects and their
associated attribute-values, similarly to the way in which we earlier associated
input-output clauses with owner objects and classes.

However, to obtain the full effect of ALP systems, we need to let each of the
individuals oi in a semantic relationship P (o1, . . . , on) (expressed as an atomic
fact) be an object, and to associate the relationship redundantly with each of
the objects oi as one of its attribute-values. The problem of representing such
relationships redundantly has been recognized as one of the problems of OO,
and representing relationships as aspects in AOP [19] has been suggested as one
way of solving the problem.

Notice that an object corresponding to an agent can contain two records of the
same relationship, one as an attribute-value representation of a semantic relation-
ship, and the other as a method representing a belief. When the two records are
identical, the belief is true. When they are different, the belief is false.

Actions. Actions and observations need to be transformed into sending and receiv-
ing messages. An action performed by an agent A that initiates relationships

P1(o11, . . . , o1l1)
. . .

Pn(on1, . . . , onln)

and terminates relationships

Q1(p11, . . . , p1k1)
. . .

Qm(pm1, . . . , pmkn)

is transformed into a message sent by object A to each object oij to add
Pi(oi1, . . . , oil1) to its attribute-values together with a message sent by A to each
object pij to delete Qi(pi1, . . . , pik1) from its attribute-values.

Observations. The transformation of observations into messages is more difficult.
Part of the problem has to do with whether observations are active (intentional),
as when an agent looks out the window to check the weather, or whether they are
passive (unintentional), as when an agent is startled by a loud noise. The other
part of the problem is to transform an observation of a relationship between
several objects into a message sent by only one of the objects as the messenger
of the relationship. To avoid excessive complications, we shall assume that this
problem of selecting a single messenger can be done somehow, if necessary by
restricting the types of observations that can be dealt with.

An active observation by agent A of a relationship P (o1, o2, . . . , on) is trans-
formed into a message sent by object A to one of the objects oj , say o1 for simplic-
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ity, requesting the solution of a goal P (o1, o
′
2, . . . , o

′
n) and receiving back a mes-

sage from o1 with a solution Θ, where P (o1, o2, . . . , on) = P (o1, o
′
2, . . . , o

′
n)Θ6.

A passive observation of the relationship can be modeled simply by some
object oj sending a message to A of the relationship P (o1, o2, . . . , on).

The objects that result from this transformation do not exhibit the benefits
of structuring objects into taxonomic hierarchies. This can be remedied by or-
ganising ALP agent systems into class hierarchies, similar to sort hierarchies
in order-sorted logics. The use of such hierarchies extracts common goals and
beliefs of individual agents and associates them with more general classes of
agents. Translating such extended ALP agent systems into OO systems is en-
tirely straight-forward.

4.2 Transformation of OO Systems into ALP Systems

The semantic structure. Given the current state of an OO system, the corre-
sponding semantic structure of the ALP system is the set of all current object-
attribute-values, represented as binary relationships, attribute(object, value),
or alternatively as ternary relationships, say as relationship(object, attribute,
value).

Agents. We distinguish between passive objects that merely store the current
values of their attributes and active objects that both store their current values
and also use methods to interact with the world. Both kinds of objects are treated
as individuals in the ALP semantic structure. But active objects are also treated
as agents.

Messages. The treatment of messages is dealt with case by case:

Case 1. A passive object sends a message to another object. By the definition
of passive object, this can only be a message informing the recipient of one of
the passive object’s attribute-values. The only kind of recipient that can make
use of such a message is an active object. So, in this case, the message is an
observation of the attribute-value by the recipient. The observation is active
(from the recipient’s viewpoint) if the message is a response to a previous mes-
sage from the recipient requesting the sender’s attribute-value. Otherwise it is
passive.

Case 2. An active object sends a message to another object requesting one of
the recipient’s attribute-values. This is simply the first half of an active observa-
tion of that attribute-value. The second half of the observation is a message from
the recipient sending a reply. If the recipient does not reply, then the observation
fails.

Case 3. An active object sends a message to another object changing one of
the recipient’s attribute-values. The message is simply an action performed on
the semantic structure.
6 In most OO languages this can be done more directly, without explicitly sending

and receiving messages. This more direct access to an object’s attribute-values can
be regarded as analogous to an agent’s observations and actions.
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Case 4. An active object sends any other kind of message to another active
object. The message is a combination of an action by the sender and an observa-
tion by the recipient. The action, like all actions, is performed on the semantic
structure. In this case the action adds a ternary relationship between the sender,
the recipient and the content of the message to the semantic structure. The ob-
servation, like all observations, syntactically records the semantic relationship as
a belief in the recipient’s internal state. The observation then becomes available
for internal processing, using forward and backward reasoning with goals and
beliefs to achieve the effect of methods. The recipient may optionally perform
an action that deletes the ternary relationship from the semantic structure.

Methods. Finally, we need to implement methods by means of goals and beliefs
(or equivalently, for ALP agents, by integrity constraints and logic programs).
Recall that, in our analysis, only active objects (or agents) employ methods, and
these are used only to respond to messages that are transformed into observa-
tions. Other messages, which simply request or change the values of an object’s
attributes, are transformed into operations on the semantic structure.

We need a sufficiently high-level characterization of such methods, so they
can be logically reconstructed. For this reason, we assume that methods can be
specified in the following input-output form:

If observation and (zero or more) conditions,
then (zero or more) actions.

This is similar to event-condition-action rules in active databases [18] and can
be implemented directly as integrity constraints in logical form. However, such
specifications can also be implemented at a higher level, by means of more ab-
stract integrity constraints (with more abstract conditions and higher-level con-
clusions), together with logic programs. At this higher level, an agent implements
an active object’s method by

– recording the receipt of the message as an observation;
– possibly using the record of the observation to derive additional beliefs;
– possibly using the record of the observation or the derived additional beliefs

to trigger an integrity constraint of the form:
if conditions, then conclusion

– verifying any remaining conditions of the integrity constraint and then,
– reducing the derived conclusion of the constraint, treated as a goal, to sub-

goals, including actions.

Beliefs, in the form of logic programs, can be used to reason forwards from the
observation and backwards both from any remaining conditions of the integrity
constraint and from the conclusion of the integrity constraint. In addition to
any actions the agent might need to perform as part of the specification of the
method, the agent might also send requests to other agents for help in solving
sub-goals, in the manner of the object-oriented logic programs of section 3.

All messages that do not request or change attribute-values are treated by the
recipient uniformly as observations. If the message is a request to solve a goal,
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then the recipient records the request as an observation and then determines
whether or not to try to solve the goal, using an integrity constraint such as:

If an agent asks me to solve a goal,
and I am able and willing to solve the goal for the agent,
then I try to solve the goal and I inform the agent of the result.

The recipient might use other integrity constraints to deal with the case that
the recipient is unable or unwilling to solve the goal.

Similarly, if the message is a communication of information, then the recipient
records the communication as an observation and then determines whether or
not to add the information to its beliefs. For example:

If an agent gives me information,
and I trust the agent,
and the information is consistent with my beliefs,
then I add the information to my beliefs.

The input-output specification of OO methods that we have assumed is quite
general and hopefully covers most sensible kinds of methods. As we have seen,
the specification has a direct implementation in terms of abductive logic pro-
gramming. However, as we have also noted earlier, other implementations in
other computer languages are also possible, as long as they respect the logical
specification.

Classes. Methods associated with classes of objects and inherited by their in-
stances can similarly be associated with sorts of ALP agents. This can be done
in any one of the various ways mentioned earlier in the paper. As remarked
then, this requires an extension of ALP agents, so that goals and beliefs can
be associated with sorts of agents and acquired by individual agents. There is
an interesting research issue here: whether sentences about several sorts of in-
dividuals can be represented only once, or whether they need to be associated,
possibly redundantly, with owner classes/sorts.

5 Local Versus Global Change

One of the attractions of object-orientation is that it views change in local, rather
than global terms. In OO the state of the world is distributed among objects as
the current values of their attributes. Change of state is localized to objects and
can take place in different objects both concurrently and independently.

Traditional logic, in contrast, typically views change in global terms, as in
the possible-worlds semantics of modal logic and the situation calculus. Modal
logic, for example, deals with change by extending the static semantics of clas-
sical model theory to include multiple (possible) worlds related by a temporal,
next-state accessibility relation. Semantically, a change of state due to one or
more concurrent actions or events, is viewed as transforming one global possible
world into another global possible world. Syntactically, change is represented by
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using modal operators, including operators that deal with actions and events as
parameters, as in dynamic modal logic.

The situation calculus [17] similarly views change as transforming one global
possible world (or situation) into another. Semantically, it does so by reifying
situations, turning situations into individuals and turning the next-state ac-
cessibility relation into a normal relation between individuals. Syntactically, it
represents change by using variable-free terms to name concrete situations and
function symbols to transform situations into successor situations.

It was, in part, dissatisfaction with the global nature of the possible-worlds
semantics that led Barwise and Perry to develop the situation semantics [4].
Their situations (which are different from situations in the situation calculus)
are semantic structures, like possible-world semantic structures, but are partial,
rather than global.

It was a similar dissatisfaction with the global nature of the situation calculus
that led us to develop the event calculus [15]. Like situations in the situation
calculus, events, including actions are reified and represented syntactically. The
effect of actions/events on the state of relationships is represented by an axiom
of persistence in logic programming form:

A relationship holds at a time T2
if an event happens at a time T1 before T2
and the event initiates the relationship
and there is no other event

that happens at a time after T1 and before T2 and
that terminates the relationship.

Like change of state in OO, change in the event calculus is also localised, but
to relationships rather than to objects. Also as in OO, changes of state can
take place concurrently and independently in different and unrelated parts of
the world. Each agent can use its own local clock, time-stamping observations
as they occur and determining when to perform actions, by comparing the time
that actions need to be performed with the current time on its local clock.

The event calculus is a syntactic representation, which an agent can use to
reason about change. It can be used to represent, not only current relationships,
but also past and future relationships, both explicitly by atomic facts and im-
plicitly as a consequence of the axiom of persistence. However, the event calculus
does not force an agent to derive current relationships using the persistence ax-
iom, if the agent can observe those relationships directly, more efficiently and
more reliably instead.

The event calculus is not a semantics of change. However, in theory, if events
are reified, then the use of the event calculus to reason about change should
commit an agent to a semantic structure in which events are individuals. But
this is the case only if all symbols in an agent’s goals and beliefs need to be
interpreted directly in the semantic structure in which the agent is embedded.
If some symbols can be regarded as defined symbols, for example, then they
need not be so interpreted. Alternatively, in the same way that in physics it is
possible to hypothesize and reason with the aid of theoretical particles, which
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can not be observed directly, it may also be possible in the event calculus to
represent and reason about events without their being observable and without
their corresponding to individuals in the world of experience.

In any case, the event calculus is compatible with a semantic structure in
which changes in relationships are performed destructively, by deleting (termi-
nating) old relationships and adding (initiating) new relationships. These de-
structive changes in the semantic structure are the ones that actually take place
in the world, as opposed to the representation of events and the derivations of
their consequences using the axiom of persistence, which might take place only
in the mind of the agent.

6 Related Work

There is a vast literature dealing with the problem of reconciling and combining
logic programming and object-orientation, most of which was published in the
1980s, when the two paradigms were still contending to occupy the central role in
Computing that OO occupies today. Most of this early literature is summarized
in McCabe’s [16].

Perhaps the most prominent approach among the early attempts to reconcile
logic programming and objects was the concurrent object-oriented logic pro-
gramming approach exemplified by [20]. In this approach, an object is imple-
mented as a process that calls itself recursively and communicates with other
objects by instantiating shared variables. Objects can have internal state in the
form of unshared arguments that are overwritten in recursive calls. Although this
approach was inspired by logic programming it ran into a number of semantic
problems, mainly associated with the use of committed choice. The problem of
committed choice is avoided in ALP systems by incorporating it in the decision
making component of individual agents.

In McCabe’s language, L&O [16], a program consists of a labelled collection
of logic programs. Each labelled logic program is like a set of beliefs belonging to
the object or agent that is the label. However, in L&O, objects/agents interact
by sending messages to other agents, asking for their help in solving sub-goals.
This is like the object-oriented logic programs of section 3.4. It is also similar to
the way multi-agent systems are simulated in GALATEA [7].

ALP systems differ from L&O, therefore, primarily in their use of a shared
environment instead of messages. This use of a shared environment is similar to
the use of tuple-spaces in Linda [10]. In this respect, therefore, ALP systems are
closest to the various systems [1,8] that use a Linda-like environment to coordi-
nate parallel execution of multiple logic programs. ALP systems can be viewed,
therefore, as providing a logical framework in which the shared environment in
such systems can be understood as a dynamic semantic structure.

A different solution to the problem of reconciling logic and objects is the lan-
guage LO [2], which is a declarative logic programming language using linear
logic. The language is faithful to the semantics of linear logic, which however is
quite different from the model-theoretic semantics of traditional logic. Commu-
nication between objects in LO is similar to that in Linda.
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7 Conclusions

In this paper, I have explored some of the relationships between OO systems
and ALP systems, and have argued that ALP systems can combine the semantic
and syntactic features of logic with the syntactic structuring and dynamic, local
behaviour of objects. I have investigated a number of transformations, which
show how OO systems and ALP systems can be transformed into one another.
These transformations are relatively straight-forward, and they suggest ways
in which the two kinds of system are related. Among other applications, the
transformations can be used to embed one kind of system into the other, for
example along the lines of [7], and therefore to gain the benefits of both kinds
of systems.

However, the transformations also highlight a number of important differ-
ences, including problems with the treatment of relations and multi-owner meth-
ods in OO systems in particular. On the other hand, they also identify a number
of issues that need further attention in ALP systems, including the need to clar-
ify the distinction between active and passive observations, to organise agents
into more general agent hierarchies, and possibly to structure the shared seman-
tic environment, to take account of the fact that different agents can more easily
access some parts of the environment than other parts. In addition, it would be
useful to make the relationships between OO systems and ALP systems explored
in this paper more precise and to prove them more formally.

As a by-product of exploring the relationships between logic and objects, the
transformations also suggest a relationship between logic and Linda. On the one
hand, they suggest that Linda systems can be understood in logical terms, in
which tuple-spaces are viewed as semantic structures and processes are viewed
as agents interacting in this shared semantic environment. On the other hand,
they also suggest that ALP systems can be generalised into Linda-like systems
in which different processes can be implemented in different languages, provided
that the external, logical specification of the processes is unaffected by their
implementation.
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Abstract. Rippling is a form of rewriting that guides search by only
performing steps that reduce the differences between formulae. Termina-
tion is normally ensured by a defined measure that is required to decrease
with each step. Because of these restrictions, rippling will fail to prove
theorems about, for example, mutual recursion where steps that tem-
porarily increase the differences are necessary. Best-first rippling is an
extension to rippling where the restrictions have been recast as heuristic
scores for use in best-first search. If nothing better is available, previously
illegal steps can be considered, making best-first rippling more flexible
than ordinary rippling. We have implemented best-first rippling in the
IsaPlanner system together with a mechanism for caching proof-states
that helps remove symmetries in the search space, and machinery to en-
sure termination based on term embeddings. Our experiments show that
the implementation of best-first rippling is faster on average than Isa-
Planner’s version of traditional depth-first rippling, and solves a range
of problems where ordinary rippling fails.

1 Introduction

Rippling is a heuristic used in automated theorem proving for reducing the dif-
ferences between formulae [5]. It was originally designed for inductive proofs,
where we aim to rewrite the inductive conclusion in such a way that we can
apply the inductive hypothesis to advance the proof. Only rewrites that reduce
differences and keep similarities are allowed. Rewrite rules can be applied both
ways around and termination is guaranteed by defining a ripple measure that is
required to decrease for each step of rewriting. Rippling has been successfully
used for automating proofs in a range of domains, for example, hardware verifica-
tion [8], summing series [21], equation solving [13] and synthesis of higher-order
programs [16].

Rippling is however not guaranteed to succeed. Proof-planning critics has
been proposed as a solution. Critics analyse failed proof attempts to suggest
patches such as a generalisation or conjecturing and proving a missing lemma
[14]. Sometimes it may also be necessary to perform a rewrite that does not
decrease the ripple measure or temporarily increases the differences between
given and goal. This is necessary in, for example, proofs involving mutually
recursive functions [5] (§5.9). Ordinary rippling is not flexible enough to deal with
this. Best-first rippling is suggested as a possible solution to these problems [5]

O. Stock and M. Schaerf (Eds.): Aiello Festschrift, LNAI 4155, pp. 83–100, 2006.
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(§5.14). The constraints of rippling are turned into a heuristic measure, allowing
previously illegal steps if nothing better is available.

We have implemented best-first rippling in IsaPlanner [11], a proof-planner
built on top of the interactive theorem-prover Isabelle [18]. IsaPlanner’s current
implementation of higher-order rippling [12], has been expanded to allow rewrites
that normally would be regarded as illegal and discarded. Heuristic scores are
assigned to the steps of rippling, and we use best-first search to pick the most
promising new state (§4.2). Allowing previously illegal steps introduces a risk of
non-termination, which is dealt with by introducing a check on term embeddings
(§4.3). During development, we also discovered that the search space for rippling
often contained symmetries and developed methods for pruning such branches
accordingly (§4.3). Using best-first search often caused the planner to conjecture
and prove the same lemma several times. A new search strategy was developed,
which delays steps waiting for the same lemma (§4.4).

Our experiments show that best-first rippling can successfully solve a range of
problems where the standard depth-first version of rippling fails. We do not find
any problems that are solvable by ordinary rippling but not best-first rippling.
Overall, the run-times for best-first rippling are, on average, better than for
ordinary depth-first rippling, despite the potentially larger search space.

2 Rippling

Rippling works by identifying differences and similarities between two terms: the
given and the goal. It then guides rewriting to reduce the differences, aiming to
arrive at a sub-goal which can be justified by the given. Application of the given
is called fertilisation.

The skeleton represents the parts of the goal that are similar to the given while
wave-fronts represent the differences. A wave-hole denotes a sub-term inside a
wave-front that belongs to the skeleton. In addition, if the given contains a
universally quantified variable the corresponding position in the goal is called a
sink. An example (from [12]) showing how the parts of a goal (here the inductive
conclusion), can be annotated with respect to a given (the inductive hypothesis)
is shown below1:

Given : ∀b : nat. a + b = b + a

Goal : suc(a)
↑

+ �b� = suc(�b�+ a)
↓

The wave-front is represented by a box, and the wave-hole by underlining. The
skeleton, coming from the given, a+b = b+a corresponds to the parts of the goal
that are either without annotation or underlined within the wave front. Note that
the universally quantified variable b in the given becomes a sink in the goal, an-
notated by �b�. There are two strategies for making fertilisation possible, known

1 Note this is one way of annotating this goal; in general a goal may be annotated in
several different ways.
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as rippling-in and rippling-out. Rippling-out will try to remove the differences
completely or move them out of the way, so that the wave-front surrounds the
entire term and the wave-hole contains an instance of the given. Rippling-in tries
to move differences into sinks. The universally quantified variable in the given
can then be instantiated to the contents of the sink and fertilisation is possible.
The arrow of the wave-front indicates if the wave-front is to be rippled out (↑)
or in (↓). In order to make the search space smaller, rippling-in is only allowed
if there exists a sink or an outward wave-front inside the inward wave-front that
eventually may absorb it. We lift this restriction for best-first rippling.

Rippling proceeds by applying rewrite-rules derived from equations, defini-
tions, theorems and lemmas. To ensure that fertilisation will eventually be pos-
sible after rewriting, rippling requires the skeleton to be preserved between each
step. Termination is guaranteed by defining a ripple-measure, based on the po-
sitions of the wave-fronts, which is required to decrease for each rewrite step.
This also helps reduce the size of the search space, and make it possible to allow
rewrite-rules to be applied in both directions, unlike traditional rewriting where
only one direction is allowed. There are different implementations of ripple mea-
sures. Here, we will use a measure based on the sum of distances from each
outward wave-front to the top of the term tree and from each inward wave-front
to the nearest sink. This measure will clearly decrease as outward wave-fronts
are moved towards the top of the term-tree, and inward wave-fronts towards a
sink further down.

Example. As an example illustrating how rippling moves the wave-front out-
ward to allow fertilisation, consider the step case goal of the inductive proof of
the commutativity of addition, where the given is the inductive hypothesis. Note
that the sinks have been omitted to reduce clutter, as the proof only uses the
rippling-out strategy.

Given : ∀b : nat. a + b = b + a

Goal : suc(a)
↑

+ b = b + suc(a)
↑

with the rules 2:
suc(X) + Y ≡ suc(X + Y ) (1)

X + suc(Y ) ≡ suc(X + Y ) (2)

suc(X) = suc(Y ) ≡ X = Y (3)

The proof of the step-case goal will proceed as follows:

suc(a)
↑

+ b = b + suc(a)
↑

��� by rule 1

2 Following the convention for dynamic rippling (§2.1), the rules have not been anno-
tated as wave-rules in static rippling.
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suc(a + b)
↑

= b + suc(a)
↑

��� by rule 2

suc(a + b)
↑

= suc(b + a)
↑

��� by rule 3

a + b = b + a��� Fertilise

T rue

Notice how each ripple-rewrite moves the wave-front outwards until we arrive at a
state where the goal contains an instance of the given. We can now simply replace
this instance with ‘True’ and conclude the proof. This is called Strong fertilisation.

In the case that rule 3 were missing, there would have been no more rewrites

possible after the state: suc(a + b)
↑

= suc(b + a)
↑
. We say that the state is

blocked. It is however still possible to apply the given using substitution, which
rewrites the blocked goal to suc(b+a) = suc(b+a).This is calledweak-fertilisation.
The resulting goal is true by reflexivity. In situations where rippling is blocked but
weak fertilisation is not possible, we can attempt to apply a critic [14].

2.1 Static and Dynamic Rippling

There are two main approaches for implementing rippling: static and dynamic rip-
pling. They represent and handle annotations in different ways. Rippling as de-
scribed by Bundy et al. [5] will be referred to as static rippling. In static rippling,
the rewrite-rules are annotated before rippling starts in such a way that they will
ensure measure decrease and skeleton preservation. The annotated rules are called
wave-rules and can be applied to any goal with matching annotations. Note that a
single theorem or definition may give rise to several wave-rules. Basin and Walsh
give a formal calculus for static rippling in first-order logic and provide a proof of
termination [1]. They represent annotations as function-symbols at the object level
of the goal. The object level annotations require a special notion of substitution
as standard substitution may produce illegal annotations. Another problem with
static rippling in a higher-order setting, as pointed out by Smaill and Green [20],
is that the object level annotations are not stable over β-reduction. This makes it
impossible to pre-annotate higher-order rewrite rules as they may turn out to be
non-skeleton preserving. To overcome these problems, the use of dynamic rippling
[9,12], and term embeddings, for representing annotations [20,9], have been intro-
duced. In dynamic rippling, annotations are stored separately from the goal and
rewrite rules are not annotated in advance. Instead, all ways of rewriting the goal
with a particular rule are generated after which the annotations are re-computed
and measure decrease and skeleton preservation checked. This means that no spe-
cialised version of substitution is needed.
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Dynamic rippling is more suitable as a starting point for our best-first rippling
implementation because it initially generates all possible rewrites, including new
subgoals that are non-skeleton preserving and non-measure decreasing. These
would normally be discarded, but we will adapt rippling to instead assign them
heuristic scores.

3 Proof-Planning

Rippling has been implemented andusedwithin the context ofproof-planning [3,6].
Proof planning is a technique for guiding the search for a proof in automated the-
orem proving by exploiting that ‘families’ of proofs, for example inductive proofs,
share a similar structure. Instead of searching the large space of an underlying
theorem-prover, the proof-planner can reason about the applicable methods for
a conjecture and construct a proof-plan consisting of a tree of tactics. A tactic is
some sequence of steps, known to be sound, that are used for solving a particular
problem in a theorem-prover, such as simplification, induction etc.

The Clam proof-planner [7], written in Prolog, and the higher-order λClam
[19], written in λProlog, both implement rippling. The Clam-family of proof
planners uses a set of methods and methodicals. Methods specify what condi-
tions have to be true for the method to be applicable to a goal and what will
be true after the method has been applied. They also carry a reference to the
corresponding tactic that will be used in the theorem-prover when the proof plan
is executed. Methodicals combine several atomic methods into larger compound
methods.

3.1 IsaPlanner

Recently, a higher-order version of dynamic rippling has been implemented in
IsaPlanner [11,10], a proof planner written in Standard ML for the interactive
theorem-prover Isabelle [18]. In IsaPlanner, proof planning is interleaved with
execution of the proof in Isabelle giving IsaPlanner access to Isabelle’s powerful
tactics. The resulting proof-plan is then represented as a proof script in the Isar
language [22], executable in Isabelle and argued to be more readable than the
output from earlier proof-planners such as λClam. Rippling in IsaPlanner has
also been shown to be considerably faster than in λClam [12].

As opposed to the Clam-family of proof planners, IsaPlanner plans the proof
through a series of reasoning states. Each reasoning state contains the partial
proof plan constructed so far, the next reasoning technique to be applied and
contextual information. The reasoning techniques are defined to be functions
from a reasoning state to a sequence of new reasoning states. This sequence rep-
resents all the ways the technique can be applied to its input state. The contex-
tual information contains knowledge acquired during proof planning, including
information about rippling-annotations and skeletons.

IsaPlanner supports several search strategies, including a generic best-first sea-
rch. Search strategies can be applied globally or locally over a reasoning technique.
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IsaPlanner’s implementation of rippling is designed in a modular fashion to be
easily extendable and can support different versions of rippling with different no-
tions of annotations and ripple measures simultaneously. Our best-first rippling
implementation is a module defined in terms of the module for ordinary rippling,
thereby making best-first rippling available for any of IsaPlanner’s versions of
rippling.

4 Best-First Rippling

Ordinary rippling requires each step in the rippling-process to satisfy the restric-
tions of measure decrease and skeleton preservation, otherwise the step is regarded
as invalid. There are however a number of occasions where these ‘invalid’ ripple-
steps would be useful or necessary for the success of rippling. In proofs involving
mutually recursive functions, the skeleton might be temporarily disrupted but re-
stored in a later step (see for example [5], §5.9). Another example is a proof where
it is necessary to ‘unblock’ rippling by performing rewrites inside the wave front
[4], which might lead to a temporary increase in the ripple-measure.

In best-first rippling, the measure decrease and skeleton preservation require-
ments are, instead of being strictly enforced, reflected in a heuristic score. The
heuristic prefers smaller ripple measures and skeleton preservation but previously
invalid steps can then be considered if nothing better is available.

To realise best-first rippling we need dynamic rippling and best-first search.
We must consider all rewrites at any given state, evaluate their heuristics scores
and compare them with all other open states in the search. The state with
the lowest score is the most promising one from which to continue rippling.
IsaPlanner implements dynamic rippling and has a generic version of best-first
search, making it a suitable platform for implementing best-first rippling.

Example: Breaking the Skeleton. As an example, consider the following
problem with mutually recursive definitions of even and odd (here called evenM
and oddM).

Given : evenM(n) ∨ oddM(n)

Goal : evenM( suc(suc(n))
↑

) ∨ oddM( suc(suc(n))
↑

with the rules:
evenM(0) ≡ T rue (4)

evenM(suc(X)) ≡ oddM(X) (5)

oddM(0) ≡ False (6)

oddM(suc(X)) ≡ evenM(X) (7)
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This gives the following best-first rippling proof using two-step induction:

evenM( suc(suc(n))
↑
) ∨ oddM( suc(suc(n))

↑
)��� by rule 5

oddM(suc(n)) ∨ oddM(suc(suc(n)) (8)��� by rule 7

evenM(n) ∨ oddM( suc(suc(n))
↑
)��� by rule 7

evenM(n) ∨ evenM(suc(n)) (9)��� by rule 5

evenM(n) ∨ oddM(n)

Fertilisation is now possible. Note that the skeleton is disrupted in steps 8 and
9 (the subgoals are therefore not annotated), but restored in the following step.
These steps are necessary for the completion of this proof but would not be
allowed in ordinary rippling.

Example: Non-measure Decrease Required. The proof of the theorem
evenR(suc(suc(0)) ∗ n), taken from [4], requires us to modify the argument to
the even-function before we can apply fertilisation. As a result, the rewrites will
not move the wave-front, only rearrange the terms inside it, and the measure
will stay the same over a number of steps. Note that this is the two-step recur-
sively defined even-function, (referred to as evenR) as opposed to the mutually
recursive version defined above.

The proof uses the following rules from the definitions of addition, multipli-
cation and for the two-step recursive version of evenR:

evenR(suc(suc X)) ≡ evenR(X) (10)

X + 0 ≡ 0 (11)

X + suc(Y ) ≡ suc(X + Y ) (12)

X ∗ suc(Y ) ≡ (X ∗ Y ) + suc(Y ) (13)

Our given and goal gives the following rippling sequence (with the sum-of dis-
tance ripple measure given for each step):
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Given : evenR(suc(suc(0)) ∗ n)

Goal : evenR(suc(suc(0)) ∗ suc(n)
↑
) Measure : 2

��� by rule 13

evenR( suc(suc(0)) ∗ n + suc(suc(0))
↑

) Measure : 1��� by rule 12

evenR( suc(suc(suc(0)) ∗ n + suc(0))
↑

) Measure : 1��� by rule 12

evenR( suc(suc(suc(suc(0)) ∗ n + 0))
↑
) Measure : 1��� by rule 10

evenR( suc(suc(0)) ∗ n + 0
↑
) Measure : 1��� by rule 11

evenR(suc(suc(0)) ∗ n) Measure : 0

Strong fertilisation is now applicable as the wave-front has been fully rippled out
leaving the ripple measure 0. All but the first and last step in the rippling proof
do not change the ripple-measure as the rewrites are applied to terms inside the
wave-front.

4.1 Complications with Best-First Rippling

The price for the greater flexibility of best-first rippling is that the search space
is considerably larger. The increased number of possibilities to continue rippling
also means that rippling will rarely become blocked, which is when applying
fertilisation or critics would normally be considered. Furthermore, allowing non-
measure decreasing and non-skeleton preserving steps means that best-first rip-
pling will loose the guarantee for termination, as it is possible to become stuck
in a loop by applying the same rewrite-rule in opposite directions.

Mutually recursive functions are another source of potential non-termination
as it is possible to apply a non-skeleton preserving rewrite rule in a direction
such that the subgoal gets larger and larger. Recall the previous example:

evenM( suc(suc(n))
↑
) ∨ oddM( suc(suc(n))

↑
)
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Here we can rewrite evenM( suc(suc(n))
↑

) in two ways, neither of which pre-
serves the skeleton. We can either apply rewrite-rule 5 from left to right or, as
rewrites are allowed in both directions, rule 7 from right to left. The latter would
give the result

oddM(suc(suc(suc(n)))) ∨ oddM(suc(suc(n))

where evenM has been transformed into oddM by adding a successor-function
rather than removing one. Consider now applying rule 5 from right to left, which
produces a state that does embed the skeleton but adds yet another successor
function:

evenM( suc(suc(suc(suc(n))))
↑
) ∨ oddM( suc(suc(n))

↑
)

Subsequent bad applications could keep alternating between evenM and oddM ,
each time adding another successor-function and hence never terminating. Our so-
lution to these problems uses caching of the visited states and is discussed in §4.3.

4.2 Best-First Heuristic

Best-first rippling requires a heuristic evaluation function for deciding which
state is the most promising to evaluate next in the rippling process. Valid ripples
should be considered before non-measure decreasing or non-skeleton preserving
steps. The ripple measure gives an indication of how far w are from being able
to apply fertilisation and conclude the proof.

We have used IsaPlanner’s sum-of-distance ripple measure during develop-
ment and testing. Rippling with this measure has been shown to perform better
than with other kinds of measures [10]. As mentioned earlier, best-first rippling
has however been implemented in a modular fashion, allowing use of any type
of ripple measure.

IsaPlanner’s best-first search function expects to be supplied with a heuristic
order function used for keeping the agenda sorted in increasing order. It is there-
fore not necessary to compute and store explicit numerical scores for the states,
just determine their relative ordering. Our heuristic function for the best-first
search takes two reasoning states and compares them. A state is regarded as less
than another state if its heuristic score is better, thus placing it closer to the
front of the agenda.

The heuristic function for comparing reasoning states can be summarised as
follows:

– States to which strong fertilisation can be applied are always preferred over
continued rippling.

– Skeleton preserving states are always given a better score than non-skeleton
preserving states.

– When both states preserve the skeleton, the state with the best ripple mea-
sure is given the lower score. If the states have the same ripple measure, they
are given equal heuristic scores.
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– If neither state preserves the skeleton, the reasoning state with the smallest
goal-term scores better.

Strong fertilisation should be preferred over everything else as it applies the
inductive hypothesis and concludes the proof. Skeleton preservation is always
preferred over non-preservation as we only want to apply non-skeleton preserving
steps when there are no other options. States that do embed the skeleton are
ordered based on the ripple-measures. In comparing ripple-measures, we need to
take into account that, as IsaPlanner employs dynamic rippling, each reasoning
state might have several ripple measures, one for each way a skeleton embeds.
IsaPlanner also supports rippling with multiple skeletons, each of which may
embed in different ways. For comparisons, we use the best ripple-measure of
each state.

The heuristic also handles non-rippling states, such as setting up a rippling
attempt or applying fertilisation. Non-rippling steps are simply preferred be-
fore more rippling as a fixed number of non-rippling steps will either result in
a solution (if fertilisation is successful) or a new ripple-state to which our stan-
dard heuristic is applicable if we have to prove a lemma. Little or no search is
needed.

Because best-first rippling does not become blocked as often as ordinary rip-
pling does, we considered introducing some heuristic measure allowing the ap-
plication of weak fertilisation and critics before we run out of applicable rules.
We developed a variant of best-first rippling where weak-fertilisation and Isa-
Planner’s lemma calculation critics were applied eagerly to states where none
of the children were skeleton-preserving, i.e. the state would have been blocked
in ordinary rippling. The non-skeleton preserving children are also kept in the
agenda, but given a worse heuristic score than to weak fertilise and/or conjecture
a lemma.

4.3 Termination and Reduction of Search Space Size

As mentioned before, allowing rippling with non-measure decreasing wave-rules
means that best-first rippling is no longer guaranteed to terminate. The same
wave-rule now can be applied in opposite directions, causing loops, and it is
possible to apply rewrites that just blow up the size of the goal-term as described
in §4.1. Another source of inefficiency is the many symmetric branches in the
search tree.

To deal with these problems, the best-first implementation caches the visited
states of a ripple sequence. We filter out any new subgoals that are identical to
subgoals previously seen anywhere in the search tree, thereby pruning symmetric
branches. The termination and looping problem is dealt with by introducing an
embedding check, as used in IsaPlanner’s lemma conjecturing ([10] Chapter 9).
If a previous goal-term embeds into the new sub-goal it is removed, which filters
rewrites that would otherwise cause divergence. Kruskal’s Theorem [15], states
that there exists no infinite sequence of trees such that an earlier tree does not
embed into a later tree. Therefore, the embedding check will restore termination,
which was lost as we relaxed the restriction of ripple-measure decrease. We have
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(5) odd(suc(suc n) \/ odd(suc n)
By (1) =>

(3) even(suc n) \/ odd(suc n)

(4) odd(n) \/ odd(suc n)

By (2) => By (1) <=

Pruned: Same−check (3)

By (2) <=

(6) odd(n) \/ even(n) (7) even(suc n) \/ odd(suc n)

(8) even(suc n) \/ odd(suc n) (9) even (suc(suc (suc n) \/ odd(suc n)

Pruned: Same−check (3)

By (2) => By (1) <=

Pruned: embeds (3)

(2)  odd(suc N) == even(N)
(1)  even(suc N) == odd(N)

Fig. 1. Partial search tree for best-first rippling showing how branches are pruned to
avoid loops and redundant rewrites. Note that the two rules are allowed to be applied
in both directions.

chosen to only check embeddings against other states on the same branch, if
checked against states on alternative OR-branches we could potentially prune
useful states. This approach appears to work well in practice. Figure 1 illus-
trates how unproductive branches are pruned to reduce the size of the search
space.

4.4 Delaying Parts of the Search

We discovered that a common problem arising when using best-first or breadth-
first search for rippling is that the same lemma might be conjectured indepen-
dently at different places in the search space, causing the planner to pursue
several simultaneous attempts on the same lemma.

In IsaPlanner’s standard depth-first rippling this is not an issue. When a
blocked state is encountered, a lemma is conjectured and proved before back-
tracking to try more rippling in the original proof attempt. Lemmas that have
already been proved to be true (or failed) are cached, allowing later blocked
states requiring the same lemma to use the previous result, thus saving time
by avoiding symmetric parts of the search space. When using best-first search,
it may be the case that after a lemma has been conjectured and a proof at-
tempt begun, some state in the original proof attempt has a better heuristic
score so rippling is continued from there. If this second ripple also becomes
blocked and requires a lemma which we already have started a proof of else-
where, we want to prevent beginning a second attempt. Instead, the second
reasoning state should be suspended until the lemma has been proved. After
the lemma is proved, not only the state from which it was originally conjec-
tured, but also any other states waiting for that particular lemma, should be
resumed.

Beginning several attempts of the same lemma was one of the major sources
for inefficiencies in our initial implementation of best-first rippling. Initially, the
problem was tackled by giving rippling in a lemma attempt a better heuristic
score than rippling the original conjecture. This is however not always desirable;
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if a bad lemma is conjectured, we do want the option to abandon it and explore
other possibilities. Experiments also suggested that this approach may miss so-
lutions to some problems and generally lead to longer run-times. We chose to
instead create a new generic search strategy in IsaPlanner. This strategy inspects
all new states and may temporarily remove them from the agenda if marked as
delayed. Similarly, the strategy checks if the current state wishes to resume
some delayed states, which are then returned to the agenda. IsaPlanner’s lemma
conjecturing machinery was augmented with a cache for lemmas-in-progress in
addition to the existing caching of completed proof attempts. The lemma con-
jecturing critic inspects the cache and if an attempt is already in progress, the
reasoning state is marked as delayed and not evaluated further until the proof
attempt of the relevant lemma is finished.

4.5 Storing Skeletons

Ordinary rippling will discard any skeletons that cannot be embedded in the
current goal term as they are not needed any more. Best-first rippling on the
other hand, needs to keep all skeletons. After applying a non-skeleton preserving
step, the previous skeleton must be kept so we can keep track of whether or not
the skeleton is restored in subsequent steps.

The skeletons and their possible embeddings are stored in IsaPlanner’s con-
textual information for rippling. Previously, only the list of possible embeddings
of a skeleton was stored. When a skeleton failed to embed, all references to the
skeleton were removed, making it impossible to later check if the skeleton could
embed into some new state. For best-first rippling, the contextual information for
rippling has been modified to store a list of pairs consisting of both the skeleton
and a list of embeddings of that skeleton (as opposed to only the embeddings
list). A skeleton not embedded in the current subgoal will have an empty list of
embeddings, but will still be kept.

5 Evaluation and Results

Best-first rippling has been evaluated by comparing it to IsaPlanner’s imple-
mentation of ordinary rippling, which uses depth-first search. We measured the
number of successfully solved problems as well as run-times on both successful
and failed proof attempts. Our test-problems included a set of benchmarks for
IsaPlanner, consisting of 55 theorems in Peano arithmetic and about lists, to test
the performance of best-first rippling compared to ordinary rippling on standard
problems. Best-first rippling has a larger search space and performs some extra
work computing heuristic scores, so we expected it to be slower than ordinary
depth-first rippling. The benchmarks also included a range of non-theorems, al-
lowing us to test the robustness of best-first rippling. Ideally we would like to
exhaust the search space quickly when no solution can be found, rather than see
non-termination. In addition to IsaPlanner’s benchmarks, we also tested a set of
39 problems where we would expect to see the full benefits of best-first rippling,
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Fig. 2. Number of successes on the 94
theorems in the test set (55 bench-
marks and 39 additional)

Fig. 3. Average run-times in seconds

including proofs about mutually recursive functions, proofs involving destructor-
style functions (such as the predecessor function in Peano arithmetic) and proofs
where measure increasing steps are required. The mutually recursive problems
typically require induction schemes reflecting the depth of the nested recursive
function definitions. As an example, recall the mutually recursive definition of
even and odd from §4. The two functions are defined in terms of each other so
we use two-step induction. In these cases, the induction scheme was supplied
manually to IsaPlanner/Isabelle, as inference of induction schemes is currently
limited to standard recursively defined data-types.

We also compared a version of best-first rippling that applies critics when it
is blocked, with a version that eagerly tries to apply critics or weak-fertilisation
when no more skeleton-preserving steps are available. This was expected to in-
dicate whether applying critics is more efficient than searching the larger space
arising from allowing non-skeleton preserving steps.

The experiments were conducted on a standard 2 GHz Intel Pentium4 PC
with 512 MB of memory running Isabelle2005. Each problem had a timeout
limit of 30 seconds.

The number of successful proofs for the three versions of rippling are dis-
played in figure 2. Both best-first rippling with eager application of critics and
the variant without it, managed to find proofs for 76 of the 94 theorems. Ordinary
depth-first rippling succeeded to find 49 proofs, 40 from IsaPlanner’s benchmarks
compared to 41 for best-first rippling. The additional benchmark problem solved
by best-first rippling was rev(l) = qrev(l, [ ]), a problem expected to fail as Isa-
Planner lacks a generalisation critic for accumulator variables, but here solved as
a side effect of our caching mechanism3. On the additional set, ordinary rippling
proved only 10 theorems compared to 35 for best-first, which was expected as
these were chosen from classes of problems known to be difficult for ordinary
rippling.

3 The interested reader can find the proof on the project website: http://dream.
inf.ed.ac.uk/projects/bfrippling.
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Fig. 4. Each scatter-plot represents a conjecture, with the x-value being the runtime for
ordinary rippling and the y-value the runtime of standard best-first rippling. The ver-
tical and horizontal lines marks the timeout limit of 30 seconds. Failed proof-attempts
have also been plotted along these lines for clarity. A logarithmic scale is used for better
visualisation.

Figure 3 shows the average run-times for proof-attempts while figure 4 shows
the time spent on each proof for best-first and ordinary rippling. Ordinary rip-
pling is slightly faster on most problems both techniques can solve but the dif-
ferences are small. Best-first rippling is however faster on average, due to a few
outliers for ordinary rippling. Ordinary rippling fails or times out more often
than best-first rippling. As a result, best-first rippling is faster than depth-first
rippling overall, and also spends less time on conjectures it cannot prove thanks
to the caching and embedding-check.

The differences in runtime appears to be small between the two variants of
best-first rippling. Conjecturing lemmas eagerly when no skeleton-preserving
steps are available appears to make little difference to the run-times of the mu-
tually recursive problems in our test set. We also notice that best-first rippling
spent less time on failed proof attempts, including the non-theorems in the test
set, despite the larger number of allowed rewrites.

The full collection of test problems, results and function definitions can be
found on-line at http://dream.inf.ed.ac.uk/projects/bfrippling. The
source code is available from the IsaPlanner website: http://sourceforge.net/
projects/isaplanner/.

To summarise the results; best-first rippling proves a number of theorems
where ordinary rippling is too restricted to succeed, as expected. Despite the
larger search-space of best-first rippling the differences in run-times compared
to ordinary rippling are small. Best-first rippling appears to be more robust
when presented with non-theorems, less time is spent on failed proof-attempts
compared to ordinary rippling.
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6 Related Work

6.1 Depth-First Rippling

The main difference between our work and IsaPlanner’s previous implementa-
tions of ordinary depth-first rippling [10], is that best-first rippling relaxes the
requirements that each state must preserve the skeleton and decrease the ripple
measure. These requirements guarantees the termination of ordinary rippling,
something that is lost for best-first rippling. Our implementation instead uses
mechanisms for caching of visited states to avoid loops and a check on term
embeddings to restore termination (see Kruskal’s Theorem [15]). This works
well in practise and has the additional advantage of pruning the search space of
symmetric branches.

6.2 Best-First Rippling in λClam

James Brotherston implemented a best-first methodical in the λClam proof plan-
ner [2]. The best-first methodical use a greedy search strategy, considering only
the best option at the current node, not previous nodes higher up in the tree.
Higher branches in the search tree are only investigated on backtracking. Ap-
plied to rippling4, Brotherston identifies this as a problem as it does not allow
switching focus to the most promising area of the search. Our best-first search
strategy is not greedy and we can easily switch focus to different parts of the
search tree as IsaPlanner’s reasoning states, held in the agenda, contains the
necessary local contextual information about the proof-plan and next reasoning
technique.

6.3 Best-First Proof-Planning

Manning et al. presents an implementation of best-first proof-planning in Clam
[17]. A best-first heuristic is employed to make choices between three different
proof planning methods; generalisation, simplification and induction, as a fixed
ordering sometimes causes unnecessarily complicated proofs or even causes fail-
ure. Our work differs from that of Manning as we are applying best-first search
within the rippling technique. IsaPlanner applies induction and rippling first,
then attempts simplification or generalisation if the ripple becomes blocked. De-
spite this, all proofs in [17] are solvable by best-first rippling, although perhaps
not in the most efficient way.

7 Further Work

As a side-effect of the caching mechanism, best-first rippling manages to prove
the conjecture rev(l) = qrev(l, [ ]) where we would expect rippling to fail without
a generalisation critic that can introduce an accumulator variable before induc-
tion and rippling is attempted. Best-first rippling does however fail to prove more
4 Personal communication: internal Blue Book Note series, numbers 1405, 1409, 1425.
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complicated theorems involving similar tail-recursive functions. Such problems
can be solved using a critic to analyse the failed proof attempt in order to sug-
gest a generalisation. Another limitation of the current implementation is that
the user is required to specify if an induction scheme other than standard one
is required. The Clam proof-planner had a number of critics for finding lem-
mas, forming generalisations, case-splits and revising the induction scheme [14].
IsaPlanner has currently only one critic, for lemma calculation. We plan to imple-
ment additional critics in IsaPlanner. This is expected to allow a larger number
of problems to be solved automatically, including many of the problems from the
test set where both best-first and ordinary depth-first rippling currently fail.

The caching techniques we have discussed could also benefit ordinary rip-
pling. In particular, pruning states already seen from the search space removes
symmetric branches which would potentially improve run-times.

Our test-set mainly consisted of relatively easy theorems. Further experiments
will evaluate best-first rippling on harder problems. We also plan to undertake
a larger comparison between rippling and regular rewriting.

8 Conclusions

We have shown that our implementation of best-first rippling is able to automat-
ically prove a number of theorems where IsaPlanner’s previous implementation
of depth-first rippling fails, for example, proofs about mutually recursive func-
tions and proofs requiring a temporary increase in the ripple measure. Rippling
has been allowed more flexibility by recasting the measure decrease and skele-
ton preservation requirements into heuristic scores. In allowing these steps we do
however lose the guarantee of termination for rippling. Our solution to this prob-
lem introduces an embedding check (§4.3), where new subgoals in which we can
embed previously seen cached goals on the same branch are pruned. This cuts
out branches where subsequent applications of non-skeleton preserving rewrites
leads to divergence as described in §4.1 and restores termination. We also found
that the search space often would contain symmetries, where the same state
occurs in several different places. To improve efficiency, any goal identical to a
cached goal is simply pruned.

Using best-first search rather than depth-first search means that it is possible
to switch between rippling in a lemma attempt and rippling in the original
proof, depending on which seems more promising. This often gave rise to the
same lemma being conjectured from different blocked states. Our new search
strategy suspends any states requiring a lemma for which a proof is already in
progress. When a lemma is proved, all states waiting for it are resumed.

Our test results show that best-first rippling not only is capable of solving
a range of problems not solvable by ordinary rippling, but also has faster run-
times overall thanks to the combination of efficiency measures described above
and the guidance from best-first search. We also compared two versions of best-
first rippling to verify if it is beneficial to apply critics before best-first rippling
is blocked, as best-first rippling might not become blocked as often as ordinary
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rippling due to the larger search space. On our test set, we did however find that
applying critics eagerly when no more skeleton preserving states were available,
made little difference.
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Abstract. In this paper we investigate the computational complexity
of combinatorial problems with givens, i.e., partial solutions, and where
a unique solution is required. Examples for this article are taken from
the games of Sudoku, N-queens and related games. We will show the
computational complexity of many decision and search problems related
to Sudoku, a number of similar games and their generalization. Further-
more, we propose a logical description of several such problems that can
lead to a formulation in the language of Quantified Boolean Formulae
(QBF) and, hence, their mechanization via a QBF solver. Some experi-
ments on finding the minimum number of givens necessary/sufficient to
guarantee uniqueness of solution are shown.

1 Introduction

Sometimes a combinatorial problem comes with a partial solution, i.e., an assign-
ment to some of the variables is part of the input. A typical case is that of planning,
where the initial and goal states are part of the input, and the sequence of states
that is searched must, respectively, start and finish with them. Another example
is frequency assignment in a telecommunications network, where the specification
requires that some of the nodes have their frequency assigned already.

Maybe the best example concerns Sudoku, a solitaire game which has recently
become very popular in newspapers and magazines: a Sudoku of order n2 is
an n2 × n2 matrix of n2 symbols in which each symbol occurs exactly once in
each row, each column, and each of the n2 n × n boxes (typically indicated by
the slightly heavier lines) of the matrix. Figure 1(b) shows a 4 × 4 (n = 2)1

Sudoku board with a partial solution (the numbers are called givens). Sudoku
completion, and its precursor Latin square completion (cf. Section 4) are NP-
complete problems [13].

A peculiarity of Sudoku is the promise, provided by the newspaper, that the
completion is unique. This promise typically facilitates people in the search for the
solution.The literature on structural complexity offers several examples of promise
problems, i.e., problems which have the guarantee of some property, like the exis-
tence of a solution. Such problems are abstracted in the complexity class TFNP [9]
of total functions in NP. Other complexity classes are mentioned in [1].

1 Typically newspapers propose 9 × 9 (n = 3) boards and between 20 and 30 givens.
For the sake of readability, in this paper we show only 4 × 4 boards.

O. Stock and M. Schaerf (Eds.): Aiello Festschrift, LNAI 4155, pp. 101–115, 2006.
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This paper deals with instances of problems which come with the promise
of the existence and uniqueness of a solution, like Sudoku in the newspapers.
Figure 1(c-d) show two boards with such a property. Following the current ter-
minology, cf. en.wikipedia.org/wiki/Sudoku, we call such instances proper.
Of course, some boards are not proper (cf., e.g., Figure 1(b)), and some are not
even solvable, (cf., e.g., Figure 1(a)).

1 2

3 3

(a)

1 2

3

(b)

1 3 2

4 3

2 3

(c)

1 2

4

3

(d)

Fig. 1. 4 × 4 Sudoku boards with partial assignments (givens): (a) with no solution,
i.e., a CSP-PA, not PS (cf. Def. 3, 4), (b) with multiple solutions, i.e., a CSP-PS, not
PPS (cf. Def. 4, 5), (c) non minimal, with unique solution, i.e., a CSP-PPS, neither
McPPS nor MsPPS (cf. Def. 5, 6), (d) cardinality-minimal, i.e., a CSP-McPPS (which
implies MsPPS) (cf. Def. 6)

A number of computational problems arise, which, to the best of our knowl-
edge, have never previously been studied. As an example, given an instance
with a partial solution, decide whether it is proper, and if not, find a set of
further assignments (possibly minimal) such that it becomes proper. The for-
mal definitions and the statements of the computational problems are listed
in Section 2. Some results concerning computational complexity of the prob-
lems are presented in Section 3. Section 4 reports an analysis of the mini-
mum number of assignments that must be given in order to have the possi-
bility, or the necessity, of proper instances. This problem has received some
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attention: as an example, at the time of writing this paper, it is known (cf.
en.wikipedia.org/wiki/Mathematics of Sudoku) that there are sets of 17
givens that are proper for the 9×9 Sudoku, and it is currently unknown whether
there are such sets of 16 givens. We formally define problems about the minimum
number of givens necessary/sufficient to guarantee uniqueness of the solution and
formulate them in terms of formulae in second-order logic; then we show an ex-
perimental analysis. Section 5 concludes the paper and reports current research.

2 Preliminaries

In this section we briefly recall the definition of constraint satisfaction problems
and then define the decision and search problems whose complexity we are going
to analyze in the sequel.

First of all, we define the basic form of constraint satisfaction problems and
their solutions. Similar definitions can be found in, e.g., [5]. In the sequel, given
two sets X and Y , we denote with XΔY their difference, that is the elements
that belong to one of the seta, but not to the other. More precisely, XΔY =
{a ∈ (X ∪ Y )|((a ∈ X) ∧ (a �∈ Y )) ∨ ((a ∈ Y ) ∧ (a �∈ X))}.

Definition 1 (CSP). Let D be a finite set of size at least 2. A V -tuple t, where
V represents a finite set of variables, is a mapping which associates a value tx ∈
D to every x ∈ V . A V -relation is a set of V -tuples. A Constraint Satisfaction
Problem (CSP) is a triple 〈X, D, C〉 where:

– X is a finite set of variables,
– D associates to every variable x ∈ X a domain Dx ⊆ D and
– C is a finite set of constraints, each of which is a V -relation for some V ⊆ X.

Definition 2 (Solution of a CSP). Given a V -tuple t and a subset U ⊆ V of
its variables, we denote by t|U the restriction of t to U , which has the same value
as t on the variables of U and is undefined elsewhere. The explicit assignment
of the value of a V -tuple t on a variable x ∈ V to value a is written t[x := a].

An X-tuple t satisfies a V -relation c ∈ C if t|V ∈ c. We denote by Sol(c) the
set of X-tuples which satisfy c. The set

⋂
c∈C Sol(c) of X-tuples which satisfy

all the constraints is called the solution space, and denoted Sol(C). The set of
X-tuples t such that tx ∈ Dx for all variables x is called the search space and
noted SD, or simply S if the domain is implicit from the context. Given a tuple
t we denote with V (t) the set of variables x ∈ X to which t assigns a value,
while t is undefined on the variables in XΔV (t). For the sake of simplicity, the
sets X and C will be considered as globally defined and shall therefore be omitted
from the parameters of most definitions; only the search space will be explicitly
mentioned.

Using the above definitions we can formally define a number of properties of
CSPs that formalize the decision and search problems outlined in Section 1.
The first two definitions distinguish the notion of partial assignment and partial
solution.
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Definition 3 (CSP with partial assignment). Given a CSP Σ = 〈X, D, C〉,
we define a CSP with Partial Assignment (CSP-PA) as a pair Π = 〈Σ, τ〉, where
τ is a U -tuple for some set U ⊆ X.

From now on we call τ the partial assignment.

Definition 4 (CSP with partial solution). Given a CSP Σ = 〈X, D, C〉, we
define a CSP with Partial Solution (CSP-PS) as a pair Π = 〈Σ, τ〉, where τ is
a U -tuple for some set U ⊆ X and the CSP admits a solution that is compatible
with τ .

A more interesting notion in our context is the definition of properness, already
outlined in the Introduction.

Definition 5 (CSP with proper partial solution). Given a CSP Σ =
〈X, D, C〉, we define a CSP with Proper Partial Solution (CSP-PPS) as a pair
Π = 〈Σ, τ〉, where τ is a U -tuple for some set U ⊆ X and the CSP admits
exactly one solution that is compatible with τ .

In order to clarify the above definitions we introduce an example:

Example 1. Consider a CSP Σ = 〈X, D, C〉 over Boolean variables, where X =
{a, b, c, d, e}, D = {true, false} and C =

a ∧
a → b ∧
(c ∨ d)↔ e

In this setting, a U -tuple τ is a partial assignment to the Boolean variables
{a, b, c, d, e}. For example, let τ1 = {a,¬b}, τ2 = {a, b}, and τ3 = {a,¬e}. It is
easy to verify that the CSP with τ1 is a partial assignment but not a partial
solution, τ2 is both a partial assignment and a partial solution, but not a proper
one, while τ3 satisfies all three definitions. ��

As mentioned in the Introduction, in the context of 3 × 3 Sudoku, it is an open
problem to decide what is the minimal number of givens that are needed to
guarantee the existence of a proper Sudoku instance. We define two forms of
minimality, one with respect to cardinality, and the other with respect to set
containment. The first form is more intuitive and, in the context of Sudoku,
defines when a set of givens contains the least number of elements necessary.
The set-containment minimality defines when a set (of givens) is minimal in the
sense that no subset of it is a proper instance. Since the definition of the CSP
includes the variables that we want to minimize as well as other variables, the
minimization will only apply to a given subset (denoted as M in the sequel) of
all the variables (X) of the CSP.

Definition 6 (Minimal proper partial solution). Given a CSP Σ = 〈X, D,
C〉, a set of variables M ⊆ X and a U -tuple τ (for some set U ⊆ M) such that
the CSP-PA Π = 〈Σ, τ〉 is proper, we define two forms of Minimal Proper
Partial Solution:

– Minimality w.r.t. cardinality (CSP-McPPS): for all sets V ⊆ M such that
|V | < |U | there is no V -tuple τ1 such that the CSP-PA Π = 〈Σ, τ1〉 is proper.
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– Minimality w.r.t. set containment (CSP-MsPPS): for all sets V ⊂ U there
is no V -tuple τ1 such that the CSP-PA Π = 〈Σ, τ1〉 is proper.

Example 2 (Example 1, continued). τ3 is not minimal w.r.t. set containment,
since τ4 = {¬e} is proper. Actually, τ4 is minimal w.r.t. cardinality, hence it
is minimal w.r.t. set containment. τ5 = {c, d} is proper and minimal w.r.t. set
containment, but not w.r.t. cardinality. ��

The above definitions naturally lead to a number of decision and search prob-
lems that we start investigating in this paper. More precisely, we investigate the
following decision problems:

Definition 7 (Decision problems)

Satisfiability: Given a CSP-PA, is it a CSP-PS?
Properness: Given a CSP-PS, is it a CSP-PPS?
C-minimality: Given a CSP-PPS, is it a CSP-McPPS?
S-minimality: Given a CSP-PPS, is it a CSP-MsPPS?

Moreover, there are a number of interesting search problems in this framework,
here we only mention the most relevant ones.

Definition 8 (Search problems)

Minimal repair: Given an unsatisfiable CSP-PA, find a “minimal delete”
CSP-PS. That is, this problem amounts to find a minimal set of assignments
that must be withdrawn in order to make the CSP satisfiable.

Minimal add: Given a CSP-PS, find a “minimal add” CSP-McPPS (CSP-
MsPPS). That is, this problem amounts to find a minimal set of assignments
that must be included in order to make the CSP minimally proper.

Minimal delete: Given aCSP-PPS,finda“minimal delete”CSP-McPPS (CSP-
MsPPS). That is, this problem amounts to find a minimal set of assignments
that must be withdrawn in order to make the CSP minimally proper.

In the next section we will analyze the computational complexity of the above
defined decision and search problems and hint at how they can be solved using
standard solvers for SAT and QBF.

3 Results on Computational Complexity

In this section we investigate the computational complexity of the decisional
(subsection 3.1) and search problems (subsection 3.2) listed in Section 2. From
now on, we assume that the input is given as a set of constraints C over a set of
variables X . We also assume that the problem of checking whether t ∈ Sol(C)
is polynomial in the size of the representation of the input. Additionally, we
assume that the size of D is fixed. Such properties hold for propositional logic
and for CSPs, in the sense of [5].
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3.1 Decision Problems

We first analyze the computational complexity of the simplest decision problem,
that is deciding whether a constraint satisfaction problem with a given partial
assignment has a solution. This problem is well-known in the literature and this
result is not new.

Theorem 1. Given a CSP Σ = 〈X, D, C, 〉 and a partial assignment τ , deciding
whether the CSP-PA Π = 〈Σ, τ〉 is a CSP-PS (i.e., it has a solution) is NP-
complete.

Proof. Trivial, in fact let the partial assignment be empty. This problem reduces
to the satisfiability of a CSP, that in our setting is well-known to be NP-complete.
Moreover, the problem obviously belongs to NP, since we only need to guess a
solution and check whether it satisfies the constraints. ��
We now investigate the computational complexity of checking properness of a
constraint satisfaction problem with partial solution.

Theorem 2. Given a CSP Σ = 〈X, D, C, 〉 and a partial assignment τ such
that Π = 〈Σ, τ〉 is a CSP-PS, deciding whether it is a CSP-PPS (i.e., it has a
unique solution) is coNP-hard and in US.

Proof. coNP-hardness: we reduce the problem of checking whether a proposi-
tional formula φ is unsatisfiable to our problem. Given a propositional formula
φ defined on a set of variables X , and a fresh propositional variable r �∈ X ,
we define the formula ψ as (φ ∧ ¬r) ∨ (

∧
x∈X x ∧ r). Note that ψ is satisfiable,

because the second disjunct is satisfied by the assignment “alltrue” A such that
A(y) = true for each y ∈ X ∪ {r}. Therefore ψ can be readily defined as a CSP-
PS Πψ (with empty τ). Moreover, φ is unsatisfiable iff A is the unique model of
ψ, because if φ is unsatisfiable then ψ has no other models, and if there exists
a model M (over X) of φ, then both A and M ∪ {¬r} are distinct models of ψ,
hence ψ is not uniquely satisfiable. Summing up, φ is unsatisfiable iff Πψ is a
CSP-PPS.

Membership to US [2]: US is defined as the class of decision problems solvable
by an NP machine such that the answer is “yes” iff exactly one computation
path accepts. Therefore our problem belongs to US by definition. Note that US
⊆ Dp [8]. ��

The above results characterize the basic problems, we now analyze the com-
plexity of the more difficult problems involving minimality, that is cardinality-
minimal and subset-minimal solutions. It is somehow surprising that these two
problems belong to different complexity classes, as we show in the following
theorems:

Theorem 3. Given a CSP Σ = 〈X, D, C〉, a set of variables M ⊆ X and a
U -tuple τ (for some set U ⊆ M) such that Π = 〈Σ, τ〉 is a CSP-PPS, deciding
whether it is a CSP-MsPPS (i.e., it is a cardinality minimal CSP with a proper
partial solution) is in Πp

2 .
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Proof. This problem can be reformulated as follows: for all sets of variables L
(such that |L| < |U |) and corresponding assignment τ ′, there exists more than
one solution (they are not proper). More precisely, ∀L such that |L| < |U | ∃τ1, τ2
such that U ⊆ V (τ1), U ⊆ V (τ2), τ1 �= τ2, τ1 |= Π and τ2 |= Π . Since all these
checks can be accomplished in polynomial time, the problem belongs to Πp

2 , cf.
[11,8]. ��

Theorem 4. Given a CSP Σ = 〈X, D, C〉, a set of variables M ⊆ X and a
U -tuple τ (for some set U ⊆ M) such that Π = 〈Σ, τ〉 is a CSP-PPS, deciding
whether it is a CSP-MsPPS (i.e., it is a set containment minimal CSP with a
proper partial solution) is in Δp

2.

Proof. This problem can be reformulated as follows: none of the variables in U
can become undefined in τ without losing properness. More precisely, Π = 〈Σ, τ〉
is a CSP-MsPPS if and only if for all variables v ∈ U ∃τ1, τ2 such that V (τ) ⊆
V (τ1), V (τ) ⊆ V (τ2), τ1 �= τ2, τ1 |= Π and τ2 |= Π . Since the first quantification
(∀v ∈ U) can be replaced by |U | calls to an NP-oracle and all the other checks
can be accomplished in polynomial time, the problem belongs to Δp

2. ��
Notice that problems in Δp

2 can be solved by calling a polynomial number of
times a solver for NP-complete problems, such as a SAT-solver, while a problem
in Πp

2 requires a solver for Quantified Boolean Formulae (QBF-solver) to be
addressed effectively.

3.2 Search Problems

In this section we investigate the computational complexity of the search prob-
lems defined in Section 2. More precisely, we consider five search problems, since
the definitions of minimal add and minimal delete lead to two different search
problems, one for each minimality criterion.

The first problem we analyze is the complexity of finding a cardinality-minimal
set of assignments (givens) that we need to retract from an inconsistent CSP in
order to make it proper.

Theorem 5. Let Σ = 〈X, D, C〉 be a CSP, M ⊆ X be a set of variables and τ
be a U -tuple (for some set U ⊆ M) such that Π = 〈Σ, τ〉 is a CSP-PA.

With a polynomial number of calls to a Σp
2 -oracle we can compute the car-

dinality of the smallest set of variables L ⊆ M , such that Π1 = 〈Σ, τ1〉, where
τ1 = τ for all variables in UΔL and is undefined otherwise, is a CSP-PS (i.e.,
it has a solution).

Proof. We guess an X tuple v, we denote with τ1 the restriction of v to the
variables in UΔL (that is, τ1 = v|UΔL) and check:

1. Π1 = 〈Σ, τ1〉 is a CSP-PS
2. for all sets τ2 such that V (τ1) ⊂ V (τ2) ⊆ V (τ), Π2 = 〈Σ, τ2〉 is unsatisfiable

(not a CSP-PS).

The first check can be computed with a single call to an NP-oracle, while the
second one requires a call to an NP-oracle that guesses a new assignment V2 and
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checks condition 1. Hence, the problem can be solved by using an NPNP-oracle,
that is a Σp

2 -oracle. ��
We now investigate the complexity of the minimal add problems. In this problem
we are looking for a (cardinality or set-containment) minimal set of variables, and
their assignments, that will make the CSP proper. The variables we add must
belong to the set M and not be already contained in the current set of variables
U , therefore, we only look for a set of variables L such that L ⊆ (MΔU).

Theorem 6. Let Σ = 〈X, D, C〉 be a CSP, M ⊆ X be a set of variables and τ
be a U -tuple (for some set U ⊆ M) such that Π = 〈Σ, τ〉 is a CSP-PS.

With a polynomial number of calls to a Σp
2 -oracle we can compute an as-

signment τ1 to a cardinality-minimal set of variables L ⊆ (MΔU) such that
Π1 = 〈Σ, τ2〉, where τ2 = τ for all variables in U , τ2 = τ1 for all the variables
in L and is undefined otherwise, is a CSP-McPPS.

Proof. We guess an X-tuple v and a set L, we denote with τ1 = (v|L) and with
τ2 = (v|U∪L) and check:

1. Π1 = 〈Σ, τ1〉 is a CSP-PS
2. for all sets L1 ⊂ L and L1-tuples τ3 we have that Π2 = 〈Σ, τ3〉 is unsatisfiable

(not a CSP-PS).

The first check can be computed with a single call to an NP-oracle, while the
second one requires a call to an NP-oracle that guesses a new assignment V2 and
checks conditions 1 and 2. ��

Theorem 7. Let Σ = 〈X, D, C〉 be a CSP, M ⊆ X be a set of variables and τ
be a U -tuple (for some set U ⊆ M) such that Π = 〈Σ, τ〉 is a CSP-PS.

With a polynomial number of calls to a Σp
2 -oracle we can compute an assign-

ment τ1 to a subset-minimal set of variables L ⊆ (MΔU) such that Π1 = 〈Σ, τ2〉,
where τ2 = τ for all variables in U , τ2 = τ1 for all the variables in L and is
undefined otherwise, is a CSP-MsPPS.

Proof. This proof is similar to the previous one, we guess an X-tuple v and a
set L, we denote with τ1 = (V1|L) and with τ2 = (V1|U∪L) and check:

1. Π1 = 〈Σ, τ1〉 is a CSP-PS
2. for all sets L1 ⊂ L and L1-tuples τ3, Π2 = 〈Σ, τ − τ2〉 is unsatisfiable (not a

CSP-PS).

The first check can be computed with a single call to an NP-oracle, while the
second one requires a call to an NP-oracle that guesses a new set and assignment
and checks condition 1. ��
The same complexity upper bounds can be shown for the minimal delete prob-
lems. In this problem we are looking for a (cardinality or set-containment) min-
imal set of variables, and their assignments, to be deleted in order to make the
CSP proper. The variables we delete must belong to the set M and to the cur-
rent set of variables U . Since U ⊆ M , we look for a set of variables L such that
L ⊆ U .
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Theorem 8. Let Σ = 〈X, D, C〉 be a CSP, M ⊆ X be a set of variables and τ
be a U -tuple (for some set U ⊆ M) such that Π = 〈Σ, τ〉 is not satisfiable (i.e.,
not a CSP-PS).

With a polynomial number of calls to a Σp
2 -oracle we can compute a cardinality-

minimal set of variables L ⊆ U such that Π1 = 〈Σ, τ2〉, where τ2 = τ for all
variables in UΔL and is undefined otherwise, is a CSP-McPPS.

Proof. We guess the set of variables L and check:

1. Π1 = 〈Σ, τ2〉 is a CSP-PS
2. for all sets L1 ⊆ U such that |L1| < |L|, Π2 = 〈Σ, τ3〉, where τ3 = τ for all

variables in UΔL1 and is undefined otherwise is unsatisfiable (not a CSP-
PS).

The first check can be computed with a single call to an NP-oracle, while the
second one requires a call to an NP-oracle that guesses a new set of variables
and checks condition 1. ��

Theorem 9. Let Σ = 〈X, D, C〉 be a CSP, M ⊆ X be a set of variables and τ
be a U -tuple (for some set U ⊆ M) such that Π = 〈Σ, τ〉 is not satisfiable (i.e.,
not a CSP-PS).

With a polynomial number of calls to a Σp
2 -oracle we can compute a subset-

minimal set of variables L ⊆ U such that Π1 = 〈Σ, τ2〉, where τ2 = τ for all
variables in UΔL and is undefined otherwise, is a CSP-MsPPS.

Proof. We guess the set of variables L and check:

1. Π1 = 〈Σ, τ2〉 is a CSP-PS
2. for all sets L1 ⊆ U such that L1 ⊆ L, Π2 = 〈Σ, τ3〉, where τ3 = τ for all

variables in UΔL1 and is undefined otherwise is unsatisfiable (not a CSP-
PS).

The first check can be computed with a single call to an NP-oracle, while the
second one requires a call to an NP-oracle that guesses a new set of variables
and checks condition 1. ��
Summing up, we have shown that all the above problems belong to PSPACE
and, more precisely, to various levels of the Polynomial Hierarchy [11]. Therefore,
all of the above problems can be reduced to the problem of deciding the truth
of an appropriate Quantified Boolean Formula (QBF). Since the technology of
QBF solvers has dramatically improved in recent years, our results indirectly
show a promising way to tackle all these combinatorial problems by reducing
them to QBFs and feeding them to a QBF solver.

4 Single-Parameter Problems

In this section we focus on “single-parameter problems”, i.e., on CSPs whose
instances are conveniently described by a single integer parameter denoting the
number of variables to be assigned.
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Fig. 2. A placement of two queens on an 8×8 board which can be completed in a
unique way

The well-known queens problem gives a simple example: Is it possible to place
n non-attacking queens on a n×n chessboard? Since each queen must be assigned
a different column, there are n different variables to be assigned, and the single
parameter is n. The problem has solutions for each n ≥ 4.

Apart from this “basic” formulation, we also consider some variations of the
queens problem, with the goal of adding more constraints and thus decreasing
the number of solutions:

– queensTopLeftAngle: basic + “top left angle of the board must be occupied”,
– queensCenter: basic + “center of the board must be occupied”, where “cen-

ter” is defined as the central square, if n is odd, and one out of the four
central squares, otherwise.

We take n as the single parameter also for the two variations.
Given a single-parameter problem, we may be interested in knowing how many

variables must be fixed before having the possibility of incurring into a CSP-PPS
(cf. Definition 5), or, in other words, in finding the cardinality of a CSP-McPPS
(cf. Definition 6). Of course, this depends on the number of queens/variables.
As an example, how many queens must be placed in the 8-queens problem (a
CSP with partial solution) so that there is at least one configuration which has
a unique completion? The next definition captures this notion.

Definition 9 (σπ(n)). Let π(n) be a problem with single parameter n. σπ(n) =
m if m is the smallest integer such that there is a set of givens of π(n) of
cardinality m which is proper.

Since no placement of a single queen on an 8×8 board can be completed in a
unique way, σqueens(8) > 1. Moreover, since there is a placement of just two
queens which can be completed in a unique way (cf. Figure 2) σqueens(8) ≤ 2,
hence σqueens(8) = 2.

Some general properties of the σπ(n) function is that it is undefined when
π has no solution, that equals 1 when π has one solution, and that it dec-
reases if more constraints are added to π. Monotonicity with respect to n is not
guaranteed.

The function σπ(n) characterizes the notion of the possibility of a proper
partial solution. For capturing the notion of the necessity of a proper partial
solution we need the next definition.
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Fig. 3. A placement of six queens on an 8×8 board which can be completed in two
different ways

Definition 10 (Σπ(n)). Let π(n) be a problem with single parameter n.
Σπ(n) = M if M is the smallest integer such that all sets of givens of π(n)
of cardinality M (or higher) are either unfeasible or proper.

Since there are legal placements of six distinct queens on an 8×8 board which
can be completed in two different ways (cf. Figure 3), Σqueens(8) > 6.

Moreover, for each n it holds that Σqueens(n) ≤ n− 1 since placing legally n
queens uniquely determines the last one. As a consequence, Σqueens(8) = 7.

Some general properties of the Σπ(n) function is that it equals 0 when π has
no solution, that it is greater than or equal to σπ(n), and that it decreases if more
constraints are added to π. Monotonicity with respect to n is not guaranteed.

It is interesting to characterize the functions σπ(n) and Σπ(n) by means of
logical formulae. Let’s start with the latter, which is simpler. Since we deal with
CSP’s in the complexity class NP, by Fagin’s theorem [6] we assume that problem
π can be characterized by means of a formula in Existential Second Order logic
(ESO) such as the following:

∃ Sn π(n, Sn), (1)

where Sn is a guessed predicate representing the search space for the instance
with n variables, and π(n, Sn) is a function-free first-order formula expressing the
constraints of the problem with n variables. As an example, the queens problem
can be represented by means of the following ESO formula:

∃ queens/2 ∈ [1..n, 1..n] (2)
∀ r ∈ 1..n ∃ c ∈ 1..n queens(r, c) (3)
∀ c ∈ 1..n ∃ r ∈ 1..n queens(r, c) (4)
∀ r, c1,c2 ∈ 1..n queens(r, c1) ∧ queens(r, c2)→ c1 = c2 (5)
∀ r1, r2, c1,c2 ∈ 1..n r1 < r2 ∧ c1 < c2 ∧ (6)
(queens(r1, c1) ∧ queens(r2, c2)) ∨ (queens(r1, c2) ∧ queens(r2, c1)))→
(abs(r1 − r2) �= abs(c1 − c2))

The guessed predicate in (2) is forced to be a total, surjective and monodrome re-
lation, i.e., a permutation, by means of constraints (3), (4), and (5), respectively.
Diagonal attacks are forbidden by constraint (6).
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Table 1. Values of σ(n) and Σ(n) for the queens problem and variations (‘-’ means
that the problem has no solutions)

queens queensTopLeftAngle queensCenter
n σ(n) Σ(n) σ(n) Σ(n) σ(n) Σ(n)
4 1 1 - 0 - 0
5 2 2 1 2 1 2
6 1 1 - 0 - 0
7 2 6 1 2 2 6
8 2 7 1 4 2 6
9 2 8 2 7 2 8
10 2 9 2 9 2 9
11 3 10 2 10 2 10
12 3 11 2 11 2 11

The relation Σπ(n) > k, where k is a non-negative integer less than or equal
to n, can also be easily expressed by means of an ESO formula as follows:

∃ S1
n S2

n givensn (7)
|givensn| = k ∧ (8)
givensn ⊆ S1

n ∧ givensn ⊆ S2
n ∧ (9)

π(n, S1
n) ∧ π(n, S2

n) ∧ (10)
S1

n �= S2
n. (11)

In fact Σπ(n) > k holds if and only if there are witness predicates (cf. (7)),
i.e., two copies (S1

n and S2
n) of the guessed predicates for (1) and a set of givens

(givensn) such that: givensn has the appropriate size (8), S1
n and S2

n agree with
givensn (9), S1

n and S2
n are solutions (10), and S1

n and S2
n are different (11).

Since Σπ(n) > k can be expressed by means of an ESO formula, its valid-
ity can be computed by means of an NP computation. As a consequence, the
effective value of Σπ(n) can be computed by less than or equal to n NP com-
putations. Table 1 reports the value of Σπ(n) for the queens problem and the
above mentioned variations. The values have been obtained experimentally by
1) encoding the problem (7-11), customized by constraints similar to (2-6), in
the NP-Spec language, 2) a translation into SAT by means of the Spec2SAT
system [3], and 3) a solution of the generated SAT instance by means of the
zchaff SAT solver [10].

The results show that Σ(n) seem to “converge” to n− 1, and that this hap-
pens faster when the problem has fewer constraints, i.e., for the basic version.
Unfortunately we have no proof that this happens for each n. We note that
Σqueens(n) ≤ n − 1 trivially holds, since placing n − 1 queens forces the posi-
tion for the last one. The fact that Σqueens(n) actually equals n − 1 could be
interpreted by saying that there are so many solutions that it is always nec-
essary to specify a partial solution almost completely to be sure that there is
only one completion. This property seems to hold even for more constrained and
less symmetric versions of the problem, i.e., “queensTopLeftAngle”. Note that
Σqueens(n) < n−1 is proven by finding two boards with n−2 queens placed and
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two distinct completions. More knowledge on this problem could be obtained by
analyzing the structure of such boards, and also by studying other variants of
the problem, e.g., “queensTopAngle” (one of the top angles of the board must be
occupied), or “queensAngle” (one of the angles of the board must be occupied).

For expressing the relation σπ(n) > k we need a more complicated formula,
which is actually not ESO. The formula is as follows:

¬∀ givensn ∃ S1
n S2

n (12)
|givensn| = k ∧ (13)
givensn ⊆ S1

n ∧ givensn ⊆ S2
n ∧ (14)

π(n, S1
n) ∧ π(n, S2

n) ∧ (15)
S1

n �= S2
n. (16)

In fact σπ(n) > k holds if and only if it is not true that for each set of givens
(givensn) of the appropriate size (13) there are witness predicates (cf. (12)),
i.e., two copies (S1

n and S2
n) of the guessed predicates for (1) such that: S1

n and
S2

n agree with givensn (14), S1
n and S2

n are solutions (15), and S1
n and S2

n are
different (16).

Note that formula (12-16) differs from (7-11) on the type of the quantifiers for
the predicates. Therefore it is possible to express the problem σπ(n) ≤ k with an
EUSO (Existential Universal Second Order logic) formula. EUSO is a subclass of
second-order logic which characterizes the complexity class Σp

2 [11], i.e., a class
at the second level of the Polynomial Hierarchy which is widely conjectured to
contain NP properly (cf. also Theorem 3).

Since the problem of determining whether σπ(n) ≤ k or not is in Σp
2 , it is

impossible to solve it by means of a single call to a SAT solver. We computed the
value of σπ(n) for the queens problem and the previously mentioned variants by
means of a program written in opl [12] (a constraint modelling and programming
system by Ilog, www.ilog.com) and oplscript (a script language with a C++-
like syntax which can invoke opl). In particular, a procedure in oplscript asks
opl to solve the problem guessing k givens, and then to find a different solution
with the same givens.

Table 1 reports results of experiments also on σπ(n) for the queens problem
and variations. σπ(n) is much smaller than Σπ(n) and, as expected, gets smaller
when more constraints are added.

As mentioned in the Introduction, it is known that σSudoku(81) ≤ 17, and
it is currently unknown whether σSudoku(81) ≤ 16 or not. With techniques
similar to those described before for the queens problem, we have proven that
σSudoku(16) = 4, i.e., that in the “4× 4” Sudoku no set of 3 givens with unique
completion exists, and that there are sets of 4 givens with unique completion
(cf., e.g., Figure 1(d)).

We plan to enhance the experimental analysis by studying other single-para-
meter problems. Some popular such problems are listed as follows, and some of
them are taken from the CSPLib library of CSP problems [7], www.csplib.org.

– Golomb ruler [CSPLib prob006]: A Golomb ruler may be defined as a set
of m integers 0 = a1 < a2 < ... < am such that the m(m − 1)/2 differences
aj − ai, 1 ≤ i < j ≤ m are distinct. Such a ruler is said to contain m marks
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and is of length am. The objective is to find optimal (minimum length, which
are known for m ≤ 20) rulers. The single parameter is m.
Apart from this “basic” formulation, we may also consider some variations,
with the goal of relaxing constraints and increasing the number of solutions:
• ruler’s size = minimum + number of marks;
• ruler’s size = 2 × minimum.

– Latin square [L. Euler, 1783]: a Latin square of order n is an n × n matrix
of n symbols in which each symbol occurs exactly once in each row and each
column of the matrix. The single parameter is n2, which equals the number
of variables.

– Sudoku [en.wikipedia.org/wiki/Sudoku]: cf. Section 1. The single pa-
rameter is n4, which equals the number of variables.

– Ramsey problem [CSPLib prob017]: colour the edges of a complete graph
with n nodes using at most k colours, in such a way that there is no
monochromatic triangle in the graph, i.e., in any triangle at most two edges
have the same colour. Since with 3 colours the problem has a solution if
n < 17, we fix k to 3, and the single parameter is n · (n− 1)/2, which equals
the number of edges, i.e., the number of variables.

– Maximum density still life [CSPLib prob032]: this problem arises from the
Game of Life, which is played on a squared board, considered to extend to
infinity in all directions; the configuration of live and dead cells at time t
leads to a new configuration at time t+1 according to the rules of the game;
a stable pattern, or still-life, is not changed by these rules. What is the
densest possible still-life pattern, i.e., the pattern with the largest number
of live cells, that can be fitted into an n × n section of the board, with all
the rest of the board dead? The single parameter is n2.

5 Conclusions, Current and Future Work

In this paper we have presented a preliminary analysis of many combinatorial
problems that are required to have a unique solution. We have defined a num-
ber of computational problems, discussed their complexity, presented a logical
formulation and hinted at a reduction in the language of QBF’s.

In the future we plan to continue both the complexity and the experimental
analysis. As for the complexity analysis, it would be nice to obtain tighter results,
by, e.g., finding lower bounds. As for the experiments, we mentioned a number
of single-parameter problems that could be considered. Also, the computation
of σπ(n) could be done by means of more efficient methods, e.g., by translating
the problem into the evaluation of a QBF, for which several efficient solvers, cf.,
e.g., [4], exist.

Finally, the experiments showed that some patterns for the σπ(n) and Σπ(n)
seem to emerge for various problems, and it would be worthwhile to confirm
those patterns in general.
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The computer scientist’s primary interest in automated tools for proof checking
arises from evidence that the logical armory necessary for checking mathematical
proofs can also be used to check the compliance of software systems with their
specifications.

This paper outlines a computerized system for verifying script-files composed
of formalized mathematical proofs. This system, named Referee or Ref for short,
entered its test and experimentation phase several years ago. The design of this
� Research partially funded by INTAS project Algebraic and deduction methods in

non-classical logic and their applications to Computer Science.

O. Stock and M. Schaerf (Eds.): Aiello Festschrift, LNAI 4155, pp. 117–139, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



118 E.G. Omodeo et al.

system draws some of its ideas from a decades-long tradition (cf. [1]) of systems
of this kind. Ref uses, e.g., a natural deduction style, a kind of semantic attach-
ment which we call proof by computation, and modularization constructs aimed
at proof reuse (cf. [18]). On the other hand, some of its features, in particular its
use of a version of the Zermelo-Fraenkel set theory rather than of a fragment of
second-order predicate logic, were inspired by the work of logicians on the foun-
dations of mathematics. For this reason, the primary benchmark which we are
using for Ref is the formal reconstruction of a result of mathematical analysis—
the Cauchy Integral Theorem on analytic functions—whose scenario has already
reached a considerable size. We have developed the material necessary to reach
a proof of such a theorem from the bare rudiments of set theory. Up to now
we have checked about one half of its overall bulk and it is clear that Ref is an
attractive basis for checking broad areas of mathematical analysis. We have also
begun testing its use for discrete mathematics, which is an essential preamble to
algorithmics.1

We begin by describing the key ingredients of our system in broad-brush
terms, addressed more to potential users than to scholars in the automated
deduction field. Then we outline a Ref scenario (much less extensively devel-
oped than the one on the Cauchy Integral Theorem), aimed at verifying the
theorems on simulations and bisimulations which lie behind any efficient
stable partitioning algorithm (cf. [15,14]). An appendix provides a tableau-
fashioned account of a decision algorithm, MLSS, which plays a key role in Ref’s
architecture.

1 The Referee Proof Verifier

The Ref verifier is fed script files, called scenarios, consisting of successive defini-
tions, theorems, and auxiliary commands, which Ref either certifies as constitut-
ing a valid sequence or rejects as defective. In the case of rejection, the verifier
attempts to pinpoint the troublesome locations within a scenario, so that errors
can be located and repaired. Step timings are produced for all correct proofs, to
help the user in spotting places where appropriate modifications could speed up
proof processing.

The bulk of the text normally submitted to the verifier consists of theorems
and proofs. Some theorems (and their proofs) are enclosed within so-called theo-
ries, whose external conclusions these internal theorems serve to justify. This lets
scenarios be subdivided into modules, which increases readability and supports
proof reuse (cf. [18]). The following example, which appears early in Ref’s main
proof scenario, illustrates the syntactic form of Ref proofs:

-- Next we prove a first basic property of ordinals.

1 The URL http://www.settheory.com/Setl2/Ref user manual.html gives access to the
Ref user’s manual. Among others, this document explains how to register as a user
of the Ref system; and it also provides a link to the scenario of the Cauchy Integral
Theorem presented in keyboard form.
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Theorem 11: [Members of ordinals are ordinals] O(S) & T ∈ S→O(T).

Proof: Suppose not(s, t) =⇒ AUTO

-- We proceed by contradiction. If our theorem is false, there is an
ordinal s having a member t which is not an ordinal.

Use def(O) =⇒ Stat1 : ¬ (〈∀x ∈ t | x ⊆ t〉 &
〈∀x ∈ t, y ∈ t | x ∈ y ∨ y ∈ x ∨ x = y〉)

-- Hence, by definition of ordinal, t must either have a member a not
included in t, or a pair b, c of distinct members not related by mem-
bership.

〈a, b, c〉↪→Stat1 =⇒ AUTO

-- But since s is an ordinal, it must include its member t, so that
the second case is impossible.

Use def(O) =⇒ Stat2 : 〈∀x ∈ s | x ⊆ s〉 &
Stat3 : 〈∀x ∈ s, y ∈ s | x ∈ y ∨ y ∈ x ∨ x = y〉

〈t〉↪→Stat2 =⇒ AUTO
Suppose =⇒ b, c ∈ t & ¬(b ∈ c ∨ c ∈ b ∨ b = c)
〈b, c〉↪→Stat3 =⇒ AUTO
Discharge =⇒ Stat4 : a �⊆ t & a ∈ t

-- Thus we need only consider the first case, in which a is a member
but not a subset of t. In this case there plainly exists a d in a but not
in t. Plainly a is a member of s, and thus a subset of s; so d is also a
member of s.

〈d〉↪→Stat4 =⇒ d ∈ a & d /∈ t
〈a〉↪→Stat2 =⇒ a ⊆ s
ELEM =⇒ d ∈ s

-- By definition of ordinal, it follows that d either equals t, is a
member of t, or that t is a member of d. But all three of these
cases are impossible, since any would imply the existence of a
membership cycle. This contradiction proves our theorem.

〈d, t〉↪→Stat3 =⇒ d ∈ t ∨ t ∈ d ∨ t = d
〈Stat4〉Discharge =⇒ Qed

As this example illustrates, a theorem’s proof consists of a sequence of state-
ments (also called inference steps), each of which consists of a hint portion (e.g.:
Use def(O), 〈a, b, c〉↪→Stat1, Discharge, ELEM) separated by the sign =⇒ from
the assertion of the statement. Each assertion must be a syntactically well-
formed formula in Ref’s set-theoretic language; each hint must reference one of
the basic inference mechanisms that Ref provides, and may also supply this infer-
ence mechanism with auxiliary parameters (e.g.: Use def(O), Suppose not(s, t)),
including the context of preceding statements in which it should operate (e.g.,
〈Stat4〉Discharge draws a contradiction from the conjunction of all assertions
following the label Stat4). When no ambiguity or obscurity ensues from this,
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an assertion can be represented laconically by the keyword AUTO. Thus, in the
above proof: when AUTO occurs in the initial Suppose not–statement, it ob-
viously stands for the assertion O(s) & t ∈ s & ¬O(t), contrary to the sought
conclusion; when it occurs in the 〈a, b, c〉↪→Stat1–statement, it stands for the
formula

(a ∈ t & a �⊆ t) ∨
(
b, c ∈ t & ¬(b ∈ c ∨ c ∈ b ∨ b = c)

)
,

because this is what results from the assertion bearing the label Stat1 when
its bound occurrences of variables get replaced by the new constants a, b, c;
dually, in the 〈t〉↪→Stat2– and in the 〈b, c〉↪→Stat3–statement AUTO stands for
t ∈ s → t ⊆ s and for b, c ∈ s → (b ∈ c ∨ c ∈ b ∨ b = c), respectively.

Fifteen inference mechanisms currently constitute the inferential armory of
Ref. In the five sections which follow, after outlining the inference mechanisms
give our verifier most of its special flavor, we explain its notion of inference
step context and describe how contexts can be restricted by means of statement
labels.

2 The ELEM Primitive and ‘Blobbing’

Among Ref’s inference primitives, ELEM is the most central (its use being, of-
ten, tacitly combined with other forms of inference). ELEM implements multi-
level syllogistic [11,12], a decision algorithm which determines whether a given
unquantified set-theoretic formula involving individual variables (which desig-
nate sets) and a restricted collection of set operators is satisfiable. (A tableau-
fashioned account of a decision procedure for this fragment of set theory is given
in Sec. 8). Using the ELEM algorithm, the Ref verifier can identify many cases in
which a conjunction constructed by negating one statement of a proof and con-
joining a selection of earlier statements is unsatisfiable, so that the statement
follows from the preceding context. When not all the constructs appearing in
this context (e.g. quantifiers and setformers) are part of Ref’s built-in syllogis-
tic, a preprocessing step, called blobbing, replaces all parts of the current con-
text whose principal operators are not recognized by the decision algorithm by
‘blobs’, i.e. by new variables designating either sets (when they occur as terms)
or propositions (when they occur as subformulae). This blobbing operation re-
places syntactically identical (or recognizably equal) parts of a conjunction by
the same variable. It is also able to treat as equal well-formed parts which only
differ by the renaming of bound variables in quantifiers or setformers, and also
treats existential quantifiers as negated universal quantifiers.

The primary function of blobbing is to reduce all the constructs that appear in
proof statements submitted to ELEM to the ones which multilevel syllogistic can
handle. Blobbing is also used to introduce other simplifications which extend the
power of ELEM beyond that of simple multilevel syllogistic and improve system
performance.

Blobbing consists of three subphases: (1) pre-blobbing, which makes reductions
such as the reduction of any part of the form Fin(#X) to Fin(X) (justified by
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the remark that the cardinality of a set X is finite if and only if X is finite);
(2) blobbing proper, during which subterms whose lead constructs are not known
to the multilevel syllogistic algorithm are replaced by set names and quantified
subformulae are replaced by propositional variables; (3) post-blobbing, which
drops parts of a purported contradiction when it is clear that they can play no
role in establishing its contradictory nature.

In some cases the verifier provides a few efficiency-oriented variants of the
ELEM deduction primitive. These are invoked by prefixing the keyword ELEM
with a parenthesized label (as we will see again in Section 6) which may include
various special characters. Including the character “*” just before the closing
parenthesis of the prefix suppresses the normal internal examination of special
functions like cons, car, and cdr (the ordered pair constructor x, y �→ [x, y] and
its associated projections p �→ p[1], p �→ p[2], normally treated by the methods
discussed in [8]), i.e. it treats these as unknown functions whose occurrences
must be ‘blobbed’. This treats statements like

[x, [y, z]] = [x2, [y2, z2]] & [x, [y, z]] = [x3, [y3, z3]] & [x, [y, z]] = [x4, [y4, z4]]

as if they read
xyz = xyz2 & xyz = xyz3 & xyz = xyz4 ,

and so makes deduction of

[x2, [y2, z2]] = [x3, [y3, z3]]

from the conjunction shown above easy. Without modification of the ELEM prim-
itive’s operation this same deduction would require many seconds. This coarse
treatment is of course incapable of deducing the implication

[x, [y, z]] = [x2, [y2, z2]]→ (x = x2 & y = y2 & z = z2)

which it sees as

xyz = xyz2 → (x = x2 & y = y2 & z = z2) .

3 The Suppose not, QED, Suppose, Discharge Primitives

Suppose not statements occur, exclusively and always, as the first inference step
in Ref proofs. They have the form

Suppose not(c1, . . . , cn) =⇒ · · · ,

where c1, . . . , cn are distinct constants local to a proof, which correspond in
number and in positions to the distinct unquantified variables appearing in the
statement T of the corresponding theorem. Such theorem variables are in fact
understood to be universally quantified; and in a proof-by-contradiction the
constants ci replace them during deduction of a contradiction. Accordingly, the
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statement which follows =⇒ in the Suppose not step must be logically equiv-
alent to the negation of an instantiated version of T . At the end of the proof
there must appear a statement of the form

Discharge =⇒ QED

which matches the Suppose not and indicates that a contradiction was derived
by assuming the existence of a counterexample to T .

A Suppose statement has the form

Suppose =⇒ B · · · ,

where the formula B that follows =⇒ can involve no constants save those al-
ready available in the part of the proof preceding it (including globally defined
constants, constants of the form cΘ local to the current theory, constants gen-
erated within the proof by substitution of an existentially bound variable, and
constants generated by application of a THEORY—cf. Sec. 5).

Every step C coming after a Suppose =⇒ B can exploit the temporary as-
sumption B as part of its context, until the following Discharge statement which
matches this Suppose statement and so eliminates this assumption, along with
all the intermediate steps C which were derived from it.

As already said, Discharge statements always match Suppose and Suppose not
statements within a proof, in the same balanced way in which closed parentheses
match open parentheses within an arithmetic expression.

To see how this inference primitive works, let us consider the following proof
fragment:

C
Suppose =⇒ B
D
Discharge =⇒ A .

Here the Suppose and Discharge are taken to match each other, so that C repre-
sents the overall context available before the Suppose, D represents the context
portion derived from the temporary assumption B , and A is the assertion which
the Discharge yields. Ref will only regard this derivation as legitimate if it can
find an intermediate formula D′ implied by C&B&D and such that A ‘trivially’
follows from the formula C&(B → D′).

4 Proof by Structure

Proof by structure uses a simple auxiliary language of structure descriptors to
keep track of the top structural levels of sets appearing in scenario proofs. Any
special set defined in a scenario, for example N, the set of all integers, or R,
the set of all reals, can be used as a primary structure symbol in this language.
This descriptor attaches to all members of the set, for instance any integer has
the descriptor N. A significant but less basic example is Z+, the set of all non-
negative signed integers, which does not occur in our present scenarios but could
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easily be defined. Structure descriptors need not be confined to sets, but can also
designate classes, like the class O of all ordinals, the class Fin of all finite sets,
the class Inf of all infinite sets, and the class V of all sets.

Given any symbols S, S1, S2, . . . representing structures, we can then form:

(i) {S}: describes a set all of whose elements have the descriptor S. For example,
the set N has the descriptor {N}; the set P(N) of all sets of integers has the
descriptor

{
{N}
}
.

(ii) [S1, S2]: describes a pair whose components have respectively the descriptors
S1 and S2.

These constructions can be compounded. For example

(e.1) {[N, N]} describes a set of integer pairs (and so applies to Z, the set
{[i, j] : i ∈ N, j ∈ N | i = 0 ∨ j = 0} of signed integers);

(e.2) {[N,V ]} describes a map from integers to elements of any kind, e.g. it
describes any finite or infinite(ly denumerable) sequence.

A given set can have several descriptors. For example, a finite sequence of
signed integers has the descriptors {[N, Z]} and Fin. Since Z itself has the descrip-
tor {[N, N]}, a sequence of signed integers also has the descriptor

{[
N, [N, N]

]}
,

which in any given situation we may wish either to use or ignore. Infinite se-
quences of signed integers have the descriptors {[N, Z]} and Inf . Real numbers in
Cantor’s representation are equivalence classes of such sequences (cf. Section 5),
and accordingly have the descriptors

{
{[N, Z]}

}
and {Inf }.

A mechanism within the verifier should track the descriptors of variables and
expressions appearing in proofs whenever possible. For example, a variable x
known to satisfy a clause x ∈ N has the descriptor N, a variable known to satisfy
x ∈ Z has the descriptors Z and [N, N].

Setformers and other basic constructors operate in a known way on the struc-
ture descriptors introduced above. Suppose, for example, that s is a set known
to have some descriptor {D}, and that e(x) is an expression having the free vari-
able x which is known to map elements having the descriptor D into elements
having the descriptor D′. Then

{e(x) : x ∈ s | P}
has the descriptor {D′}, while

{[x, e(y)] : x ∈ s, y ∈ s | P}
has the descriptor {[D, D′]}.

When a set s is known to have a descriptor {D}, any element x for which x ∈ s
has been proved is known to have the descriptor D. If D is a primitive descrip-
tor representing a known set, this will give us the assertion x ∈ D, for example
x ∈ N, which may be needed as an auxiliary hypothesis for the application of
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some theorem. Similarly any set s having the descriptor {[N, N]} is known to
satisfy Is map(s), and also

〈∀x ∈ s | x[1] ∈ N & x[2] ∈ N〉.

Conclusions of this kind can often result automatically. This is a principal use
for our system of structure descriptors.

Many other basic set-theoretic operations have known effects on descriptors.
These often follow from the definitions of the operators in question. For example:

(1) If s has the descriptor {D}, then so does every one of its subsets, and P(s)
has the descriptor

{
{D}
}
.

(2) If s has the descriptor
{
{D}
}
, then

⋃
s has the descriptor {D}. Note hat

this follows automatically from the definition {x : y ∈ s, x ∈ y} of
⋃

s, since
the bound variable y in the iterator has the descriptor {D}, so each of the
x has the descriptor D, and the set as a whole has the descriptor {D}.

(3) If s1 and s2 both have a descriptor {D}, then so does s1 ∪ s2.
(4) If s1 and s2 both have the descriptor Fin , then so does s1 ∪ s2.
(5) If s1 and s2 have descriptors {D1} and {D2} respectively, then s1 ∩ s2 has

both descriptors {D1} and {D2}. Even if s2 has no descriptor, s1 ∩ s2 and
s1 \ s2 have the descriptor {D1}, as does any set s for which an assertion
s ⊆ s1 has been proved.

(6) If s1 has the descriptor Fin , so do s1 ∩ s2 and s1 \ s2, as does any set s for
which an assertion s ⊆ s1 has been proved.

(7) If s1 and s2 have the descriptor Fin, so does any setformer {e : x ∈ s1, y ∈
s2 | P}, or any setformer {e : x ∈ s1 | P}.

(8) #s always has the descriptor Card . Since the class of cardinals has the
descriptor {O}, #s also has the descriptor O, as does any x known to be a
cardinal. If s has the descriptor Fin , then #s has the descriptor N. Since N

itself has the descriptor {Fin}, #s also has the descriptor Fin.
(9) If s has the descriptor {D}, then any setformer like {x : x ⊆ s |P} is known

to have the descriptor
{
{D}
}
; this result obviously generalizes.

(10) If sets s and t have the descriptors {D} and {D′} respectively, then their
Cartesian product s × t has the descriptor {[D, D′]}. If s and t both have
the descriptor Fin , so does s × t.

(11) If s and t have descriptors {[D, D′]} and {[D′, D′′]} respectively, then t ◦ s
has the descriptor {[D, D′′]}. If s and t both have the descriptor Fin , so does
t ◦ s.

(12) If s and t have descriptors D, D′ respectively, then [s, t] has the descriptor
[D, D′]. If u has the descriptor [D, D′], then u[1] has the descriptor D and
u[2] has the descriptor D′.

(13) If F has the descriptor {[D, D′]}, then its inverse F← has the descriptor
{[D′, D]}, and any of its domain restrictions F|s has the descriptor {[D, D′]}.
If F has the descriptor Fin , then F← and F|s both have the descriptor Fin
also.
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There may be useful extensions of these ideas to single-valued and one-one
maps; also to topological situations, spaces of continuous functions, etc. Note
that some of the conclusions derived manually in the present scenarios can result
automatically by use of structure descriptors. For example, the cardinal sum of
s1 with s2 is defined as

#
(
{[x, 0] : x ∈ s1} ∪ {[x, 1] : x ∈ s2}

)
,

making it obvious that the sum of two integers is an integer. Similarly, the
definition of cardinal product, namely

#{[x, y] : x ∈ s1, y ∈ s2}

makes it apparent that the product of two integers is an integer. Since the
difference of integers is defined by #(n\m), it also follows immediately that the
difference of integers is an integer.

Ordinals also have the descriptor {O}, since any element of an ordinal is an
ordinal. Any

⋃
s of a set having the descriptor {O} has the descriptor O. It may

be worth carrying the set next(N) as an additional descriptor. If this is done,
⋃

s
will be known to have the descriptor next(N) if s has the descriptor {N}, and so
to have the descriptor N (i.e. to be an integer) if there is another s′ having the
descriptor next(N) for which a statement s ∈ s′ is available.

In many cases a definition or theorem appearing in a scenario will character-
ize the action on structure descriptors of one or more of the function symbols
appearing in it. The examples given just above illustrate this. Such facts com-
bined with the other rules given above extend the verifier’s ability to tack the
structures of objects appearing in proofs. For example, if s, t, and u are sets
known to have the descriptor {N}, then

{(x ∗ y) + z : x ∈ s, y ∈ t, z ∈ u | P}

is also known to have the descriptor {N}.
The theory of summation yields the fact that

∑
f has the descriptor D if

f has the descriptors {[d, D]} and Fin, and if the ⊕ operator appearing in the
summation can be shown to map pairs of objects having the descriptor D into
objects having this same descriptor. Thus, for example, the sum or product of
any setformer like{[

[x, y, z], (x ∗ y) + z
]

: x ∈ s, y ∈ t, z ∈ u | P
}

is also known to be an integer if s, t, and u are sets known to have the descriptors
{N} and Fin .

The structure definition mechanism explained above carries over in a useful
way to recursively defined functions (in our set-theoretic context, these can be
functions defined by transfinite induction). To show why such extension is pos-
sible, we first need to note that the system of descriptors extends readily to
function symbols, since these are very close semantically to sets of pairs. For ex-
ample, the descriptor {[D1, D2]} can be ascribed to any one-parameter function
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symbol which maps each object having the descriptor D1 into an object having
the descriptor D2. Similarly, the descriptor

{[
[D1, D2], D3

]}
can be ascribed to

any two-parameter function symbol which yields an object having the descrip-
tor D3 whenever its two parameters have the respective descriptors D1 and D2.
(For example, the integer addition operator + has the descriptor

{[
[N, N], N

]}
,

but also the descriptors
{[

[V ,V ],O
]}

since it always produces an ordinal, and
the descriptor

{[
[Fin ,Fin], N

]}
, since it produces an integer for any two finite

inputs.) In the three-parameter case,
{[[

[D1, D2], D3
]
, D4

]}
can be ascribed to

any three-parameter function symbol which yields an object having the descrip-
tor D4 whenever its three parameters have the respective descriptors D1, D2,
and D3.

Using these descriptors, we can state the rule for function application as fol-
lows: If a one-parameter function symbol f has the descriptor {[D1, D2]}, and
x has the descriptor D1, then f(x) has the descriptor D2. Similarly, if a two-
parameter function symbol f has the descriptor

{[
[D1, D2], D3

]}
, and its two

arguments x1, x2 have the descriptors D1, D2, then f(x1, x2) has the descriptor
D3. We leave it to the reader to formulate the rules for more than two arguments.

Function compounding acts in an obvious way on descriptors, for example if
f has the descriptor {[D1, D2]} and g has the descriptor {[D2, D3]}, then g(f(·))
has the descriptor {[D1, D3]}. Rules like this make it obvious why

#
(
{[x, 0] : x ∈ s1} ∪ {[x, 1] : x ∈ s2}

)
,

yields an integer for every pair of integer arguments: the functional expression
{[x, 0] : x ∈ s1} has the descriptor {[Fin,Fin]} simply because it is a setformer
with s1 as its only free variable, and likewise for {[x, 1] : x ∈ s2}. Since the
union operator ∪ has the descriptor

{[
[Fin ,Fin],Fin

]}
, it follows immediately

that {[x, 0] : x ∈ s1} ∪ {[x, 1] : x ∈ s2} has the descriptor
{[

[Fin ,Fin],Fin
]}

also. Since # has the descriptors {[Fin ,Fin]} and {[V ,O]}, #
(
{[x, 0] : x ∈

s1}∪{[x, 1] : x ∈ s2}
)

has the descriptors
{[

[N, N],Fin
]}

and
{[

[N, N],O
]}

, and
therefore

{[
[N, N], N

]}
. Much the same argument applies to the integer product.

Next consider a transfinite recursive definition of one of the general types we
allow, namely

f(s, t) =Def d

({
g
(
f
(
x, h(s, t)

)
, s, t
)

: x ∈ s | P
(
x, f
(
x, h(s, t)

)
, s, t
)}

, s, t

)
,

where we assume that the functions d, g, and h have been defined prior to the
occurrence of the recursive definition shown. In working with this definition we
will want to establish that f has some descriptor

{[
[D1, D2], D3

]}
, i.e. that it

yields an element having descriptor D3 for any input arguments with descriptors
D1, D2 respectively.

This conclusion will be valid under the following circumstances: we need to
know that the null set has descriptor D1, that one can ascribe the descriptor
{D1} to any set which has the descriptor D1, and that there exists a descriptor
D′ such that
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(a) h has the descriptor
{[

[D1, D2], D2
]}

;

(b) g has the descriptor
{[[

[D3, D1], D2
]
, D′
]}

;

(c) d has the descriptor
{[[

[{D′}, D1], D2
]
, D3

]}
.

Then in the ground case of the transfinite recursive definition f(∅, t) has the
value d(∅, s, t), and so must produce an element with the descriptor D3. In the
remaining case it follows inductively (given that s and t have the respective
descriptors D1, D2) that f(x, h(s, t)) has the descriptor D3 for every x ∈ s, so
that g(f(x, h(s, t)), s, t) has the descriptor D′, and so

(∗)
{
g
(
f
(
x, h(s, t)

)
, s, t
)

: x ∈ s | P
(
x, f
(
x, h(s, t)

)
, s, t
)}

has the descriptor {D′}. Therefore the right side of the recursive definition seen
above has the descriptor D3, and it follows inductively that f has the descriptor{[

[D1, D2], D3
]}

.
If s has the descriptor Fin , then the set (∗) will have this descriptor also, and

so if d has the descriptor
{[[

[Fin ,Fin], D2
]
,Fin
]}

, f will have the descriptor{[
[Fin , D2],Fin

]}
. On the other hand, if d is a monadic operator like arb (which

is postulated to satisfy arb(∅) = ∅ &
(
X �= ∅→ arb(X) ∈ X

)
), and so has the

descriptor {[{D3}, D3]} (where the null set must have the descriptor D3), then g

must have the descriptor
{[[

[Fin ,Fin], D2
]
,Fin
]}

, and s the descriptors {Fin}
and Fin , for f(s, t) to have the descriptor Fin. In this case f has once again the
descriptor

{[
[Fin , D2],Fin

]}
.

5 THEORY Application

Ref incorporates a technical notion of ‘theory’ designed, for large-scale proof-
development, to play a role similar to the notion of object class in large-scale
programming. As discussed in [18], such a mechanism can be very useful for
‘proof-engineering’.

The theories we allow, like procedures in a programming language, have lists
of formal parameters. Each ‘theory’ requires its parameters to meet a set of
assumptions. When ‘applied’ to a list of actual parameters that have been shown
to meet the assumptions, a theory will instantiate several additional ‘output’
set, predicate, and function symbols, and then supply a list of theorems initially
proved explicitly (relative to the formal parameters) by the user inside the theory
itself. These theorems will generally involve the new symbols.

Again from [18], we borrow the following example of a familiar theory:

Theory equiv classes(s, Eq)
〈∀x ∈ s | Eq(x, x)〉
〈∀x ∈ s, y ∈ s, z ∈ s | Eq(x, y) → (

Eq(y, z) ↔ Eq(z, x)
)〉

=⇒ (EqcΘ, rΘ) -- ‘quotient’-set and globalized ‘canonical embedding’
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〈∀x ∈ s , y ∈ s | Eq(x, y) ↔ Eq(y, x)〉
〈∀x ∈ s , y ∈ s | Eq(x, y) ↔ rΘ(x) = rΘ(y)〉
〈∀ b ∈ EqcΘ | arb(b) ∈ s & rΘ(arb(b)) = b〉
〈∀x ∈ s | rΘ(x) ∈ EqcΘ〉
〈∀x ∈ s | Eq

(
x,arb(rΘ(x))

)〉
End equiv classes.

As an illustration of the usefulness of the THEORY construct, let us exploit
the theory just seen in order to define the set R of all real numbers. Since
the apparent simplicity of the reals as Dedekind cuts is marred by problems
concerning the treatment of negative reals, we opted for Cantor’s approach based
on rational Cauchy sequences. Thus our construction of the reals runs as follows:

-- The set of rational sequences
Def 46. Seq

Q
=Def {f : f ⊆ N × Q | domain(f) = N & Svm(f)}

-- The constant 0 rational sequence
Def 47. 0

QS
=Def N ×

{
0

Q

}
-- The constant 1 rational sequence

Def 48. 1
QS

=Def N ×
{
1

Q

}
-- Pointwise sum of rational sequences

Def 49. F+
QS

G =Def

{[
p[1], p[2] +

Q
G�p[1]

]
: p ∈ F

}
-- Pointwise additive inverse of rational sequence

Def 50. Rev
QS

(F) =Def

{[
p[1], Rev

Q
(p[2])
]

: p ∈ F
}

-- Pointwise absolute value of rational sequence
Def 51. |F|

QS
=Def

{[
p[1],
∣∣p[2]
∣∣

Q

]
: p ∈ F

}
-- Pointwise difference of rational sequences

Def 52. F−
QS

G =Def F+
QS

Rev
QS

(G)
-- Product of rational sequences

Def 53. F∗
QS

G =Def

{[
p[1], p[2] ∗

Q
G�p[1]

]
: p ∈ F

}
-- Pointwise reciprocal of rational sequence

Def 54. Recip
QS

(F) =Def Shifted seq
({[

i, Recip
Q
(F�i)
]

: i ∈ N

}
,

arb
{
h ∈ N | 〈∀i ∈ N\h | F�i �= 0

Q
〉})

-- Pointwise quotient of rational sequences
Def 55. F/

QS
G =Def F∗

QS
Recip

QS
(G)

-- Rational Cauchy sequences
Def 56. Cau

Q
=Def

{
f : f ∈ Seq

Q
| 〈∀ε ∈ Q | ε >

Q
0

Q
→

Fin(
{

i ∩ j : i ∈ N, j ∈ N |
∣∣f�i −

Q
f�j
∣∣

Q
>

Q
ε
}
)〉
}

-- Equivalence of rational sequences
Def 57. F≈

QS
G ↔Def 〈∀ε ∈ Q | ε >

Q
0

Q
→

Fin(
{

x : x ∈ domain(F) |
∣∣F�x−

Q
G�x
∣∣

Q
>

Q
ε
}
)〉

Theorem 465: F ∈ Cau
Q

→ F≈
QS

F. Proof: · · ·

Theorem 466: F, G, H ∈ Cau
Q

→ (F≈
QS

G → (G≈
QS

H ↔ H≈
QS

F)
)
. Proof: · · ·
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-- Now that we know that ≈
QS

is an equivalence relationship,
we can apply the equiv classes theory to it, to derive

APPLY 〈EqcΘ : R, fΘ : Cau to Re〉 equiv classes
(
R(f, g) 
→ f≈

QS
g, s 
→ Cau

Q

)
=⇒

Theorem 467: 〈∀f ∈ Cau
Q
, g ∈ Cau

Q
| f≈

QS
g ↔ Cau to Re(f) = Cau to Re(g)〉 &

〈∀r ∈ R | arb(r) ∈ Cau
Q

& Cau to Re(arb(r)) = r〉 &
〈∀f ∈ Cau

Q
| Cau to Re(f) ∈ R〉 & 〈∀f ∈ Cau

Q
| f≈

QS
arb
(
Cau to Re(f)

)〉.
Let us observe, as an incidental remark, that in spite of its relative length

this list of statements works better than Dedekind’s approach, because it allows
us to ‘lift’ laws already proved for rational numbers into corresponding laws for
rational Cauchy sequences, and thereby into laws concerning the reals (which
are viewed here as the ≈

QS
–classes of such sequences).

Use of External Provers. The Ref proof verifier has the ability to accept
proofs generated by various external provers (such as Otter [17], as exemplified
in [9, p. 193]). This is done by a syntactic extension of the normal Ref APPLY
directive, i.e. external provers are regarded as sources of variant Ref THEORYs.
When such provers are being used, the normal keyword APPLY used to invoke a
THEORY is changed to “APPLY provername”, where “provername” names the
external prover in question. In this case, the normal Ref THEORY declaration is
expanded to list Ref-syntax translations of all the theorems being drawn from
the external prover, and of all the external symbol definitions on which these
depend. An external file, also named in the modified Ref APPLY directive, must
be provided as certification of each such THEORY. Ref examines this file to
establish that it is a valid proof, by the external prover named, of all the theorems
which the THEORY claims.

6 Context of an Inference Step

Until a proof is complete and acceptable to the Ref verifier, it is undesirable to
let efficiency concerns interfere with one’s focus on the logic of the proof. Once
an initial version of the proof has been accepted by Ref, one can speed up its
processing by supplying contexts (see below) for the most time-consuming proof
steps. Ref allows one to optimize proof steps by automated context discovery.

Statement assertions and parts of compounds connected by the conjunction
sign & can be labeled for explicit subsequent reference within a proof by ap-
pending a reserved notation of the form Statnnn: to them, where nnn designates
any integer. These are the labels used in hints of statements of the form

〈e1, ..., em〉↪→Statnnn =⇒ · · ·

The context of a hint defines the collection of preceding statements, within the
proof in which the hint appears, which the inference mechanism invoked by the
hint should use in deducing the assertion to which the hint is attached. Since the



130 E.G. Omodeo et al.

efficiency of an inference mechanism often degrades very rapidly (e.g. exponen-
tially or worse) with the size of the context with which it is working, appropriate
restriction of context can be crucial to successful completion of an inference. In-
ferences which the verifier cannot complete within a reasonable amount of time
are abandoned with a diagnostic message “Abandoned...”, or with the more spe-
cific message “Failure...” if the inference method is able to certify that the infer-
ence finally attempted is impossible. Hint keywords like ELEM, EQUAL, SIMPLF,
and ALGEBRA can be supplied with context indications by prefixing them (in
the cases of ELEM and Discharge) or suffixing them (in all other cases) with a
statement label, or a comma-separated list of such labels, as in the examples

〈Stat3〉ELEM =⇒ s /∈ { x ⊆ o | O(x)&P (x) }

and
〈Stat3, Stat4, Stat9〉ELEM =⇒ s /∈ { x ⊆ o | O(x)&P (x) } .

The first form of prefix defines the context of an inference to be the collection
of all statements in the proof, back to the point of last previous occurrence of the
statement label in the proof (but not within ranges of the proof that are already
closed in virtue of the fact that they are included between a preceding Discharge
statement and its matching Suppose statement—see below). The second form
of prefix defines the context of an inference to be the collection of statements
explicitly named in the prefix. If no context is specified for an inference, then
its context is understood to be the collection of all preceding statements in the
same proof (not including statements enclosed within previously closed Sup-
pose/Discharge ranges). This unrestricted default context is workable for simple
enough inferences in short enough proofs.

The Ref Proof Step Optimizer. Ref’s automated proof optimizer attempts
to determine, for each line L in a proof, a close-to-minimal subset of the set of
all prior lines in the proof which is large enough to serve as a context for the
proof of L, i.e. large enough to be inconsistent with the negation ¬L of L. To
this end, it collects a list of prior statements, called ‘critical’, which it believes to
be necessary for the desired inconsistency. Initially this list of critical statements
consists of all the statements preceding L. A first binary search over ranges of
statements shortens this to the smallest range R of statements preceding L which
is large enough to be inconsistent with ¬L. The first statement F in this range
is added to an (initially empty) list C. This reflects the fact that if F is removed
from R, the set R ∪ {¬L} of statements is no longer inconsistent.

Let R′ be R after F is removed. Plainly C ∪ R′ ∪ {¬L} is inconsistent. But
R′ may be larger than it need be to guarantee this property. So a second binary
search is made, to shorten R′ to the smallest range R′′ of statements which is
large enough for C ∪ R′′ ∪ {¬L} to be inconsistent. The first statement of R′′

is then moved from R′′ to C. This operation is repeated as often as needed to
produce a final list C of critical statements such that C ∪ {¬L} is inconsistent.
This list C of statements is returned by the proof optimizer as the context to be
used in proving L.
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The code described in the preceding paragraphs is organized using a

procedure test range(critical list,range tup,statement)

which sets up the inconsistency tests described and then calls Ref’s underlying
ELEM procedure.

To mark a proof for invocation of the automated analysis just described, one
simply changes the normal “=⇒” mark of its initial Suppose not to “�”. To
mark a single step of a proof for application of this analysis, one changes its
“=⇒” mark to “�”. The first such mark encountered in a proof (if any) turns
off the ‘analyze by default’ option if this has been set by marking the initial
Suppose not.

Here are a few illustrative examples of the output produced by Ref’s auto-
mated proof optimizer:

The lines of context needed to prove citation of theorem T116 in line 9, namely:
(domain(f) ⊆ N) & (range(f) ⊆ Q) are T116 plus [1, 5]
The lines of context needed to prove citation of theorem T220 in line 10, namely:
g ⊆ (N × Q) are T220 plus [1, 7, 9]
The lines of context needed to prove citation of theorem T85 in line 12, namely:
domain(f ◦ h) = domain(h) are T85 plus [1, 7]

7 Case-Study on Bisimulations: Towards a Theory of
Labeled Graphs

Although one has several choices in constructing the basic notions of analysis,
the hierarchic pattern into such notions is more or less established [3]. The
situation is somewhat less standard-prone in discrete mathematics, because in
limited frameworks one can very well do with ad hoc notions (compare, e.g.,
the definition of ordered tree in [16] with various others present in texts on
algorithms). This state of affairs is quite acceptable as long as the different views
are coherent: one can contend that mathematical insight benefits from multiple
views on the same notion rather than from formalistic scruples. The issue looks
different if we want to rely on a verifier, e.g. for the reasons put forward in [15].
As a contribution towards standardization, let us see how we began to set up a
scenario on (bi)simulations (cf. [10,14]) in Ref.

A study of this kind splits naturally into one strictly mathematical layer
(where the degree of abstraction reaches infinite sets and even proper classes)
and one layer where the issues are more algorithmic (and, accordingly, are more
concerned with combinatorics and finiteness). In the case at hand, the end-
product in the mathematical layer can take the form of a theory such as the
following (where trans reflCl(R,V) designates the transitive-reflexive closure of a
map, i.e. of a set R of pairs, on a given domain V ):

Theory labeledGraph(vertices, edges, tags)
edges ⊆ vertices × vertices
vertices ⊆ ⋃ tags
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〈∀x ∈ tags, y ∈ tags | x �= y → x ∩ y = ∅〉
=⇒ (tagΘ, blockΘ, SameTagΘ, bisimΘ, βΘ, simΘ, σΘ)
〈∀e ∈ edges | e =

[
e[1], e[2]

]
& e[1], e[2] ∈ vertices〉

〈∀v, ∃y | v ∈ vertices → y ∈ tags & v ∈ y〉
〈∀x ∈ tags, y ∈ tags | x �= y → x ∩ y = ∅〉
〈∀v ∈ vertices | tagΘ(v) ∈ tags & v ∈ tagΘ(v)〉
〈∀v | blockΘ(v) = if v ∈ vertices then {w ∈ tagΘ(v) | w ∈ vertices} else ∅ fi〉
〈∀v, w | SameTagΘ(v, w) ↔ blockΘ(v) = blockΘ(w)〉
〈∀v | SameTagΘ(v, v)〉
〈∀q, r, x | q ⊆ r ∪ r← & Is map(r) & 〈∀e ∈ r | SameTagΘ(e[1], e[2])〉 &

x ∈ domain(q) → SameTagΘ(x, q�x)〉
〈∀q, r, x, y | q ⊆ r ∪ r← & Is map(r) & 〈∀e ∈ r | SameTagΘ(e[1], e[2])〉 &

Straight(q, x, y) → SameTagΘ(x, y)〉
〈∀r, x, y, v | Is map(r) & 〈∀e ∈ r | SameTagΘ(e[1], e[2])〉 &

[x, y] ∈ trans reflCl(r ∪ r←, v) → SameTagΘ(x, y)〉
bisimΘ =Def {b ⊆ {[v, w] : v ∈ vertices, w ∈ vertices | SameTagΘ(v, w)} |

edges ◦ b← = b← ◦ edges & edges ◦ b = b ◦ edges}
βΘ =Def

⋃
bisimΘ

simΘ =Def {b ⊆ {[v, w] : v ∈ vertices, w ∈ vertices | SameTagΘ(v, w)} |
edges ◦ b← = b← ◦ edges}

σΘ =Def

⋃
simΘ ∩ ⋃ simΘ

←

〈∀x | ∅ ∈ bisimΘ & bisimΘ ⊆ simΘ & (x ∈ bisimΘ → x ⊆ vertices × vertices)〉
〈∀b ∈ bisimΘ | b ⊆ βΘ〉
〈∀b ∈ bisimΘ | b← ∈ bisimΘ〉
βΘ ⊆ σΘ

〈∀b ∈ simΘ | trans reflCl(b, vertices) ∈ simΘ〉
〈∀b ∈ bisimΘ | trans reflCl(b ∪ b←, vertices) ∈ bisimΘ〉
〈∀r ∈ simΘ, s ∈ simΘ | r ∪ s ∈ simΘ〉
〈∀r ∈ bisimΘ, s ∈ bisimΘ | r ∪ s ∈ bisimΘ〉
Transitive(βΘ) & Symmetric(βΘ) & Reflexive(βΘ, vertices)
Transitive(σΘ) & Symmetric(σΘ) & Reflexive(σΘ, vertices)

End labeledGraph

In the development of such a theory, a modular subdivision of the work will,
as opposed to a direct approach, give us two advantages: on the one hand,
preliminary definitions and intermediate theories will, if properly designed, bear
an autonomous value and can be reused in a variety of situations; on the other
hand, they will make the overall task more affordable and manageable.

One readily sees that the notion of graph underlying the above theory can be
tackled at a higher degree of abstraction where the class of edges is not taken to
be necessarily a set:

Theory taggedGraph
(
Is vertex(V), Is edge(E), Is tag(X)

)
〈∀e | Is edge(e) → e =

[
e[1], e[2]

]
& Is vertex(e[1]) & Is vertex(e[2])〉

〈∀v, ∃y | Is vertex(v) → Is tag(y) & v ∈ y〉
〈∀x, y | Is tag(x) & Is tag(y) & x �= y → x ∩ y = ∅〉
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=⇒ (tagΘ, blockΘ, SameTagΘ)
〈∀v | Is vertex(v) → Is tag

(
tagΘ(v)

)
& v ∈ tagΘ(v)〉

〈∀v | blockΘ(v) = if Is vertex(v) then {w ∈ tagΘ(v) | Is vertex(w)} else ∅ fi〉
〈∀v, w | SameTagΘ(v, w) ↔ blockΘ(v) = blockΘ(w)〉
〈∀x | SameTagΘ(x, x)〉
〈∀x, y, z | SameTagΘ(x, y) & SameTagΘ(y, z) → SameTagΘ(z, x)〉
〈∀q, r, x | q ⊆ r ∪ r← & Is map(r) & 〈∀e ∈ r | SameTagΘ(e[1], e[2])〉 &

x ∈ domain(q) → SameTagΘ(x, q�x)〉
〈∀q, r, x, y | q ⊆ r ∪ r← & Is map(r) & 〈∀e ∈ r | SameTagΘ(e[1], e[2])〉 &

Straight(q, x, y) → SameTagΘ(x, y)〉
〈∀r, x, y, v | Is map(r) & 〈∀e ∈ r | SameTagΘ(e[1], e[2])〉 &

[x, y] ∈ trans reflCl(r ∪ r←, v) → SameTagΘ(x, y)〉
End taggedGraph

As can be seen by comparing the two specifications, some results are imported
from this more general taggedGraph theory into the labeledGraph theory; for its
part, the more abstract notion of graph ensures a higher degree of reusability.

Working in the opposite direction of an increasing concreteness, we designed
the following narrow-scope theory, where the set of edges is taken to be finite
and cycle-free, so that a height function for its vertices can be defined within
the theory by means of a general form of recursion available in connection with
any well-founded relation [18]:

Theory acyclicFiniteGraph(vertices, edges)
edges ⊆ vertices × vertices
Fin(edges)
Acyclic(edges)

=⇒ (heightΘ)
〈∀t ⊆ vertices | t 
= ∅ → 〈∃w ∈ t, ∀v ∈ t | [v, w] /∈ transCl(edges)〉〉
〈∀x ∈ vertices | heightΘ(x) =

⋃{
next
(
heightΘ(y)

)
: y ∈ vertices | [y, x] ∈ edges

}〉
End acyclicFiniteGraph

But how were acyclicity and the transitive closure operation defined in the
first place? Here is a viable approach, where the presupposed Svm(·) notion of
single-valued map gets refined into notions of various kinds of simple path:

-- permutation of a finite set
Def 943. Is perm(P) ↔Def Svm(P) & Fin(P) & range(P) ⊇ domain(P)

-- simple cyclic permutation
Def 944. Scycle(C) ↔Def {p ⊆ C | p �= ∅ & Is perm(p)} = {C}

-- acyclicity property of a map
Def 945. Acyclic(A) ↔Def {c ⊆ A | Is perm(c)} = {∅}

-- cycle-free path connecting two nodes, or empty path
Def 946. Straight(P, X, Y) ↔Def Scycle(P ∪ {[Y, X]}) & [Y, X] /∈ P
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-- prefixed simple path in a map (this Def exploits built-in ∈-recursion)
Def 947. sgm(N, P, S) =Def S ∪ {[x, P�x] : i ∈ N, x ∈ range(sgm(i, P, S)) ∩ domain(P)}

-- restriction of a multi-valued map
Def 948. on(R, N) =Def R ∩ (N × N)

-- transitive closure of a map
Def 949. transCl(R) =Def

{
[x, y] : q ⊆ R, x ∈ domain(q), y ∈ range(q) |(
x = y & Scycle(q)

) ∨ (x 
= y & Straight(q, x, y)
)}

-- transitive-reflexive closure of a map
Def 950. trans reflCl(R, N) =Def transCl

(
on(R, N)

) ∪ ιN

8 Conclusions and Future Work

As said at the outset, we aim at exploitations of Ref in the realm of program
correctness verification. A promising fact is that many algorithms can be speci-
fied, very naturally and in compact, high-level terms, by means of an executable
language grounded on set theory. For example—laying bisimulations and stable
partitioning algorithms momentarily aside to save space—, we can specify the
construction of a spanning tree for a finite rooted graph as simply as by the
invocation

dfst(e,r,[∅, {r}]),
where e is the set of all edges of the graph, r is a designated node, and the
procedure dfst is as follows:

procedure dfst(graph, node, tree and visited); -- depth first spanning tree
return if ( avail := graph{node} - tree and visited(2) ) = ∅

then tree and visited
else dfst( graph, node,

dfst(graph, downto := arb(avail),
withall(tree and visited, [ [node,downto], downto ])) )

end if;
end dfst;
procedure withall(tup of sets, tup of elts); -- inserts elements into sets

return [ set with tup of elts(j): set = tup of sets(j) ];
end withall;

It should be intuitively clear, indeed, that the said invocation will produce a
pair [e′, v] where the set e′ ⊆ e of edges forms a tree rooted in r and v consists
of all vertices reachable in the input graph from r, whose set coincides also
with the set of all vertices in the tree. Making these claims rigorous amounts to
developing a set-theoretic proof, which one would like to do with the assistance of
Ref. Although Ref does not, up until today, encompass the programming notation
exemplified by the above procedure, it is easy to conceive an integration of such
notation with Ref’s logical notation—the one where one characterizes rooted
graphs and spanning trees—, thanks to the set-theoretic background common
to both languages. After such an integration, proving that a procedure behaves
as desired could be done, in full, under the surveillance of our automated verifier.
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Appendix: Multi-level Syllogistic

MLSS (multilevel syllogistic with singleton) is the unquantified language of set theory
consisting of a denumerable infinity u, v, w, x, y, z, . . . of set variables, the ‘null set’
constant ∅, the set operators · ∩ ·, · \ ·, · ∪ ·, {·, . . . , ·}, the set predicates · ∈ ·, · = ·,
· ⊆ ·, and propositional connectives.

The semantics of MLSS is based upon the von Neumann cumulative hierarchy
V defined as follows (where O and P(X) designate the class of all ordinals and the
power-set of X):

Vα =Def

⋃
μ<α P(Vμ) , for each ordinal α ;

V =Def

⋃
O(α) Vα .

An assignment M over a collection of variables V is any map from V into V. Let ϕ
be an MLSS-formula over a collection V of variables, and let M be an assignment
over V . By ϕM we denote the truth-value of ϕ obtained by interpreting each variable
x ∈ V with the set xM and the set operators and propositional connectives according
to their standard meanings. Such a ϕ is said to be satisfiable if it has a model, namely,
an assignment M making ϕM true.

The satisfiability problem for MLSS is the problem of determining whether or not
any given MLSS-formula ϕ is satisfiable. It was first solved in [11]. Subsequently, it
was shown that the satisfiability problem for conjunctions of ‘flat’ MLSS-literals of
the forms

x = y , x 
=y , x∈y , x/∈y , x = y∪z , x = y\z , x = {y} , (1)

to be called normalized MLSS-conjunctions, is NP -complete (cf. [6]); more recently,
its decision procedure was optimized in [5,7] by means of semantic tableaux. For
the reader’s convenience, we sketch a decision procedure for normalized MLSS-conj-
unctions based on semantic tableaux.

Table 1 lists the rules of a tableau calculus for MLSS. Notice that the rules
(2), (5), and (9) cause branch splits.

Next we define MLSS-tableaux (for general notions on tableaux, the reader
is referred to [13]).

Let S be a finite collection of flat MLSS-literals of the form (1). An initial
MLSS-tableau for S is a one-branch tree whose nodes are labeled by the
literals in S.

An MLSS-tableau for S is a tableau labeled with MLSS-literals which can
be constructed from the initial tableau for S by a finite number of applications
of the rules (1)–(11) of Table 1.

Let T be an MLSS-tableau for S. A branch ϑ of T is said to be

• strict, if no rule has been applied more than once on ϑ to the same literal
occurrences;

• saturated, if each of the tableaux rules (1)–(11) has been applied at least
once on each instance of its premises on ϑ;

• closed, if either ϑ contains a set of literals of the form x ∈ x1, x1 ∈ x2,
. . . , xn−1 ∈ xn, xn ∈ x, for some variables x, x1, . . . , xn with n � 0, or it
contains a pair of complementary literals X , ¬X ;

• open, if it is not closed;
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Table 1. Tableaux rules for MLSS

x = y1 ∪ y2

z ∈ yi

z ∈ x
(1)

x = y1 ∪ y2

z ∈ x

z ∈ y1 | z ∈ y2
(2)

x = y1 \ y2

z ∈ x

z ∈ y1

z /∈ y2

(3)

x = y1 \ y2

z ∈ y1

z /∈ y2

z ∈ x
(4)

x = y1 \ y2

z ∈ y1

z ∈ y2 | z /∈ y2
(5) x = {y}

y ∈ x
(6)

x = {y}
z ∈ x

z = y (7)

y1 ∈ x
y2 /∈ x

y1 
= y2
(8)

x 
= y

w ∈ x w /∈ x
w /∈ y w ∈ y

(9)a

x = y
φ

φx
y

(10)b

y = x
φ

φx
y

(11)b

a w must be a new variable not occurring on the branch to which the rule is applied.
b By φx

y we denote the formula resulting by substituting in φ each occurrence of x
with y.

• satisfiable, if there exists a set model for the literals occurring on ϑ.

A tableau T is said to be

• strict, or saturated, or closed, if such are all of its branches;
• satisfiable, or open, if such is at least one of its branches.

Notice that according to the above definition, any closed branch, and therefore
any closed MLSS-tableau, is unsatisfiable.

The system of rules (1)–(11) is plainly sound, namely any MLSS-tableau for
a satisfiable normalized MLSS-conjunction must be satisfiable, and therefore
must be open.

In addition, the tableau calculus in Table 1 is complete, namely any unsatisfiable
normalized MLSS-conjunction has a closed MLSS-tableau. What is important
for our decidability purposes is that completeness is not disrupted even when the
tableau rules are subject to the following restrictions,whichguarantee termination:

R1. all applications of tableau rules are strict;
R2. rule (9) is applied only to literals of the form x �= y, with x and y occurring

in the initial collection of MLSS-literals.

It can easily be seen that starting with an initial collection S of flat MLSS-
literals, any tableau construction rule subject to the above restrictions R1 and
R2 must terminate in a finite number of steps, generating a saturated tableau TS
for S. Then the decidability of MLSS follows from the fact that S is satisfiable
if and only if the tableau TS is open.
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1: x = {y}
2: x = z1 ∪ z2

3: y /∈ z1

4: x 
= z2

5: y ∈ x

6: y ∈ z1
⊥

7: y ∈ z2

8: w ∈ x

9: w /∈ z2

12: w = y

13: y /∈ z2
⊥

10: w /∈ x

11: w ∈ z2

14: w ∈ x
⊥

Fig. 1. A closed MLSS-tableau

From the soundness of rules (1)–(11), one only needs to check that if TS is
open then S is satisfiable. Thus, let us assume that TS is open and let ϑ be an
open (saturated) branch of TS . Let

VS be the collection of variables occurring in S;
T be the collection of variables occurring on ϑ other than VS ;
∼S be the equivalence relation induced on VS ∪ T by equality literals x = y

in ϑ;
T ′ be the set {t ∈ T : t �∼S x , for all x ∈ VS};
V ′ be the set (VS ∪ T ) \ T ′;
∈̂ϑ be the dyadic relation on V ′ ∪ T ′ defined as follows:

x∈̂ϑy iff the literal x ∈ y is in ϑ.

In addition, for each t ∈ T ′, let ut be an assigned set.
Since the branch ϑ is not closed, the relation ∈̂ϑ is acyclic. Therefore we can

recursively define the following assignment, called the realization of the branch
ϑ relative to S and the sets ut, for t ∈ T ′:

Rϑx = {Rϑy | y∈̂ϑx} , if x ∈ V ′

Rϑt = ut , if t ∈ T ′ .

It can be checked that if the sets ut satisfy the conditions

(a) ut1 �= ut2 , for every pair of distinct t1, t2 ∈ T ′,
(b) ut �= Rϑx, for all t ∈ T ′ and x ∈ V ′,
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then the realization Rϑ is a model for ϑ, and in turn for S. Since conditions (a)
and (b) can always be enforced, for instance by choosing |T ′| distinct sets ut of
large enough cardinalities, we have the completeness of our tableau calculus.

It is also interesting to note that the realization Rϑ can be used on open
non-saturated branches to guide the saturation process, as discussed in [4].

Figure 1 contains a closed MLSS-tableau for the collection

S = {x = {y}, x = z ∪w, y /∈ z, x �= w}

of flat MLSS-literals.
Notice that in the above MLSS-tableau

– literals 1–4 form the initial tableau for S;
– literal 5 has been added by rule (6);
– literals 6 and 7 have been added by rule (2);
– literals 8–11 have been added by rule (9);
– literal 12 has been added by rule (7);
– literal 13 has been added by rule (10);
– literal 14 has been added by rule (1).
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Abstract. We present a composite analysis of shapes based on form
and features. We discuss how form and features are two facets of object
representation and how similarity measures are used to understand the
relation between two objects’ images. We present a novel approach to ap-
proximate a shape that can still make use of Procrustes distance, leading
to a relaxed notion of similarity measure. We introduce also a study on
the similarity measures for non-parametric kernel densities. Finally we
briefly discuss how these distance measures can be combined and repre-
sented into a Bayesian network, to learn the parameters of the defined
similarity function.

To Gigina

1 Introduction

The human inner models of visual perception have been represented in several
forms over the history of figurative art and attained a huge amount of structures
modeling the body of symbolic features and traits. These structures, together
with the way human beings perceive their representation, can provide a deep
insight to automatic visual recognition. We argue that these models, accounting
for the human representation of visual perception, can integrate those approaches
to human object recognition (see e.g. [20,35,19]) inspired by the biological and
neurophysiological aspects of human and animal perception.

Consider, for example, the paintings in Figure 1. If you look at the left drawing,
few primitive traits are sufficient to denote a face, even a known face (Michelan-
gelo’s David); on the other hand in the second one a rich representation of
shadows and lights of the lower part of a woman body can be misleading. In the
third one, a particular of Seraut pointillism anticipates how shape emerges from
pixelization. In this paper we argue that there are at least two possible aspects
of shape representation, paradigmatically connoted by the traits of the David,
by the shades in the Leonardo’s studio of drapery and by the Seraut pointillism,
and inspired by the human conception of representation. These two aspects can
be investigated for recognition purposes, and they are the implicit and explicit
representation of shapes. Where the term “explicit” is used to account for the
main traits of what, in the human representation, connotes a principal source of
information regarding a category, sort of visual synecdoche, e.g. the pupil for the
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Fig. 1.

eye, a nostril for the nose, etc. The term “implicit”, on the other hand, accounts
for the shape rendered by shadows and lights, scale pixelization, and volumetric
impression, sort of visual metonymy in which specific features account for the
whole shape. This view of recognition is in between a mereological approach to
shape (e.g. [39] for the gestaltic view, and [44] for the geometrical view) based
principally on relations holding between parts, and the computational or bi-
ologically inspired approach, in which the shape is a signal to be interpreted
analytically.

2 Primitives of Perception

A clear understanding of the concept of primitives in visual representation would
solve most of the thorniest tasks of recognition. In a recent paper discussing
the primitives of perception Chen [11] emphasises that “physically or computa-
tionally simple does not necessarily mean psychologically simple or perceptual
primitive”. In his seminal paper on visual perceptual organization [34] Pent-
land has pointed out that perception is successful because of an inner struc-
turing of our environment and because of the human ability to identify the
connections between these environmental regularities and primitive elements of
cognition. The model-based approaches to perception have been strongly influ-
enced by this view (see e.g. [15,46,38]). Among the model-based approaches,
the constructive approach, known as recognition by components (RBC), was
pioneered by [33], [43], [34], and especially by [7], and finally by [46,40]. Fur-
ther [28] have introduced the concept of vantage points in the representation of
an object components introducing the notion of aspect graph, and in [13] they
suggested a 3D modeling of an object via a hierarchical aspect representation
based on the projected surfaces of the primitives. Similarly in [36,37] objects
categories are represented through their common parts, which are recognized
according to a decomposition into primitives and recomposition is achieved ac-
cording to an algebra of figures and a Bayes aspect graph. Recently (see e.g
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[3,45,9,16,17]), in the stream of object representation approaches based on cat-
egories gathering similar parts, the problem has been faced in new terms con-
sidering features and appearances of parts, so as to overcome all the occlusion
and vantage point problems raised in the model based approaches. In particu-
lar Perona and colleagues (see [10,16,17]) have proposed modeling objects as a
constellation of parts proposing a successful method to learn object categories
from cluttered data, with unsupervised labeling, in so relieving from the burden
of manually labeling the images. In [17] features are found using the detec-
tor described in [24,25], and features are represented in an appearance space,
where each part composing an object has a Gaussian density. Analogously both
shapes and relative scales are represented by a joint Gaussian and thus the
recognition model is based on maximum likelihood estimation of the parameters
composition.

This paper is organized as follows, after few words of preliminaries, in Section 4
we introduce the explicit analysis and discuss in Section 5 the transformations of
data representation in order to easily apply Procrustes methodology to deal with a
relaxed notion of similarity. In Section 6 we discuss the distance measures for non
parametric kernel densities and, finally, before concluding, in Section 7 we briefly
hint about a combined distance learning methodology.

3 Preliminaries

We assume that an object is any element in the image that can be specifically
named, e.g. a cat, a table, even if it is partially occluded. Note that we are not
interested, here, in describing how an object is isolated from the background, or
how features are extracted. For the sake of completeness we outline the segmen-
tation methodologies used, from which the contour is obtained. In summary, for
the extraction of the contour of a shape from a cluttered image we have been
using two different segmentation methodologies depending on the type of avail-
able image. If the 3d information is available (e.g. the images are acquired from
robot perception) then segmentation is attained by a k-mean clustering of the 3d
image map, initialized with the histogram of the 3d information. Further, from
the convex-hull of each segment a shape is obtained by combining the region
of interest with the texture features. See the upper images of Figure 2. Finally
with a Canny edge detector the contour is obtained. On the other hand, if the
3d information is not available, the segmentation methodology used is based on
the assumption that the interesting object lies in the center of the image. On
this basis an ellipse, whose dimension and orientation is subject to the gradient
of the area, is drawn and from its texture a multivariate Gaussian mixture is
obtained. From the back-projected image of the density (see the first picture of
the third row in Figure 2) the contour is easily obtained. For general methods for
features extraction (see e.g. [30]). For the purpose of illustrating our methodol-
ogy on recognition we assume that the representation of an object is modeled by
a pair 〈E, I〉 where E is the shape representation as a logical matrix, which we
call the drawing and I is the feature representation of the points bound by the
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Fig. 2. The preliminary analysis leading to the shape extraction. The upper images
are obtained by K-mean clustering on a 3D image (by Bumblebee, @PtGray, on board
of the robot, from which the images have been taken), conjugated with gradient and
texture segmentation on the RGB image. The lower images illustrate different phases
of feature extraction. Second row: the second image illustrates the gradient features
of the image, the third image shows the ellipse from which textures are sampled. The
segmented image, first image in the third row, is obtained by backprojecting the pdf
of the multivariate Gaussian mixture computed from the sampled textures. The last
image is obtained by edge detecting the segmented one, with suitable region growing
to smooth the contours.

E contour, which we call the painting. Some examples of these pairs are given
in Figure 3.

In the following, by H : M × N × K we denote a matrix H of dimension
M ×N ×K. An image (or figure) is a matrix I : M ×N ×K such that M, N are
the location dimension and K is the feature dimension. Each element (x, y) in
the location dimension indicates the location of the pixel whose values belongs
to the feature space. If the features space is the color space then it can either be
boolean or ranging over intensities (in which cases the feature dimension is one)
or over different colour representations ( e.g. RGB, YIQ, HSV, YCbCr etc.).
Namely v : I �→ V with V the feature space. By shape (or drawing) we mean
an image E such that V = {0, 1}, and the shape is defined to be the location
{xi, yi}i=1...N in E of the points set having value 1. By the painting we mean an
instance {f1i, . . . , f4i}i=1..NM of the feature space of the image I : M ×N × 3.
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Fig. 3. Examples of pairs 〈E, I〉, on the left the painting and on the right the drawing,
that we consider in our analysis for the implicit and explicit description of shapes

4 Explicit Analysis

Shape recognition relies on the use of inner products or distance measures be-
tween patterns. A rich literature is devoted to understanding the distance be-
tween generic shapes, to cite some consider the analysis of moments, shock anal-
ysis, skeleton analysis, Hausdorff distance, Procrustes methods (see [42, 29, 27,
32, 41]) and more, see also [6]. However for recognition we need to smooth the
notion of distance and distill from it a notion of similarity that can suit the
categories of interest, i.e. those learned or memorized. In the next paragraph we
recall the notion of Procrustes distance.

4.1 Procrustes Distance

In general, two shapes are considered congruent if they differ by a rigid body
transformation. We first consider the form, that refers to the figure with location
and orientation removed. More specifically two figures A : N×K and B : N×K
have the same form if:

B = AΓ + 1Nγ
 (1)

where Γ : K ×K is a rotation |Γ |=1, 1N is a vector of ones and γ : K × 1 is a
translation.

On the other hand the shape refers to the equivalence class of figures having
the same form suitably scaled, so that two figures A and B have the same shape,
i.e. they belong to the same equivalence class [A] = [B], if:

B = βAΓ + 1Nγ
 (2)
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with β > 0 a scalar. In Procrustes analysis the transformations are found by
premultiplying the shape A by an (N − 1) × N Helmert matrix H. Where H
has orthonormal rows, each orthogonal to the unit vector 1N/

√
N . The rows

of the matrix AH = HA are the coordinates of the derived landmarks. The
centered landmarks, i.e. with the location removed, are obtained by the derived
landmarks as

AC = H
AH (3)

The matrix of the derived landmarks is said to be in preform space R(N−1)K ,
while the original figure is in figure space R(N)K (Goodall [18] notes that any
statistical model for the matrix in the preform space can be derived from the
figure matrix in the figure space). The derived landmarks are centered and scaled
by:

ZA = H
 HA
||HA|| (4)

The Procrustes distance between A and B is thus

d(A,B) = inf
Γ,β
||ZB − βZAΓ|| (5)

Where Γ = UV
, with U and V obtained by the singular values decomposition
of Z


AZB and:

β =
k∑
i

λi, λ1 ≥ λ2 ≥ . . . ≥ λk, the singular values

Different distance representations are given by Bookstein and Kendall [8,26].

5 Approximating PA

Procrustes analysis of shapes requires shapes to have the same form, in the
sense of equation (1). Under this perspective a major issue in comparing two
shapes using the Procrustes methodology is data representation. Given figure
A : K × N , and figure B : M × P , their shapes are given by the 2D landmark
representation A = {xi, yi}i=1..KN and B = {xj , yj}j=1..MP obtained by choos-
ing a set of landmarks in R2. Usually the landmarks are chosen from those pixels
having value 1. Since Procrustes distance is based on least squares, it asks for an
exact correspondence between the two shapes instances to be compared, that is,
points set A = {xi, yi}i=1..N is aligned to points set B = {xj , yj}j=1..K , w.r.t.
a transformation group T if the distance cannot be decreased by applying to
B a transformation from T (see [14]). Furthermore the size of the two sets of
landmarks should be the same. However, it is easy to see that, given a figure
A : K ×N , and its shape as points set A = {xi, yi}i=1..M , there are 2M possible
instances of the points set of A, each constituting an approximate represen-
tation according to some linear transformation. Hence the Procrustes distance
between two shapes varies according to the choice of the instances, i.e. of the
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Fig. 4. Two similar cats with slit change in the head and tail position. The non con-
tinuous traits show the approximation obtained from the critical points.

point set. Because we want to use Procrustes distance for the general problem
of establishing the similarity between two shapes, we need to precise this notion
better.

Consider Figure 4, the two shapes (say A and B) are different under rigid
transformations, yet similar. Our cognitive understanding of similarity relies on
the fact that the two shapes represent two cats in similar position. And indeed
similarity is far from being a precise measure, as it can only be approximated.
Under which conditions two shapes can be considered similar, given that we do
not know the class (or category) they belong to, is still an unsolved question.

Our hypothesis is the following. Let τ be a threshold value for the Procrustes
distance between two shapes (see equation 5), e.g. we take τ = 0.59. Let P

be the set of shapes labeled by a specific category (e.g cats), then we say that
two instances A = {xi, yi}i=1..M and B = {xj , yj}j=1..N of shapes A and B,
respectively, are similar if:

i. there exist approximations t1(A) of the instance A of A and t2(B) of the
instance B of B such that d(ΣX , Σti(X)) = 0, i = 1, 2, X ∈ {A, B}, where
d is the Procrustes distance, ΣY is the empirical variance-covariance matrix
of Y , and ti(X) = {xh, yh}h=1..K with K as required in the next item.

ii. There exist instances C1 = {xi, yi}i=1..M , C2 = {xj , yj}j=1..N in some pre-
defined category P such that Y and Ci have the same size and d(Y, Ci) ≤ τ ,
i = 1, 2, Y ∈ {t1(A), t2(B)}, where d is the Procrustes distance.

The first condition simply says that whenever a transformation is applied to
the input data the transformation has to be statistically consistent, i.e. the new
set of points will preserve the empirical variance-covariance. This is an obvious
requirement, otherwise similarity would be trivially satisfied: take a single point
x = (x0, y0), from each of the two shapes, they are obviously similar.

And the second condition says that the concept of similarity for a shape can
be established only if a category for that shape is defined. Under the above con-
ditions the rigid transformation is weakened, because the least square is carried
on a subspace (N −K)2 of the original figure space (N)2.

By an approximation Y = t(X) of an instance X = {xi, yi}i=1..N of a shape
we mean a linear transformation

Y = (X
W1)H

1 + . . . + (X
Wn)H


n (6)
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Fig. 5. In the images on the top the probability of each points set on the contour of
shape A depicted below, minima and maxima corresponds to the critical points. In the
images below, the first is the edge detection, the second is the points set obtained by
approximation, the third is its polygonal reconstruction.

such that Y = {xj , yj}j=1..K , with Y ⊂ X , preserving the covariance under rigid
transformations:

ΣY = βΣXΓ + 1Nγ


Here Wi : N × 2 is the selection matrix, of all zeroes but a 1 in the first column
of row i; and Hj : 2×K is the positioning matrix, of all zeroes but the column j,
made of ones. The transformation shall select from the shape the salient points,
those that characterize the shape. To understand how an approximation satisfy-
ing these constraint is built, consider the complete instance X = {xi, yi}i=1..N of
the initial shape A. The critical points of a shape are the local minima, local max-
ima and the saddle points, easily obtainable by the Hessian determinant, only if
for each {xi, yi} = p ∈ X the following condition is met: if q is contiguous to p
then q = {xi+1, yi+1} or q = {xi−1, yi−1}, hence from the matrix representation
(which otherwise is described column wise: (x1, y1), (x2, y2), . . . , (xMK , yMK) are
sorted according to the column indexing), the contour path t(X) is obtained as
follows.

Following a clock-wise direction, add to the current point (xi, yi) ∈ t(Xi) the
matrix Q : 8× 2:

18(xi, yi) +
[
−1 −1 0 1 1 1 0 −1
0 1 1 1 0 −1 −1 −1

]

Let t(Xk) be the contour reconstructed up to point (xq , yq), k ≤ q, then if the
path reaches a dead end it must follow its steps back by jumping out of the loop,
finding a point p′ �∈ t(Xk) with minimal distance:
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p′ = minδδ(p, p′), p ∈ t(Xk), p′ �∈ t(Xk)

Once the contour of the shape is defined as a continuous path of adjacent points
then critical points Cp of t(X) can be easily determined, according to the rules
of the Hessian. Note that the critical points corresponds also to the local minima
and maxima of the probability pX(xi, yi) = N (μX , ΣX) (see Figure 5).

Given the critical points Cp an approximation Y = {xj , yj}j=1..K satisfying
the condition (ii.) above can be found considering the neighbourhood of each
{xk, yk} ∈ Cp up to a specific distance δ, less than a threshold ε. Note that the
distance has to be defined on the contour, let xj = (xj , yj):

n(xi) = {y ∈ t(X) |δ(xi,y) < ε∧
∀z.n(y, z) ∧ n(z,xi)→δ(z,xi) ≤ ε}

Thus starting with Cp the approximation Y = {xj , yj}j=1..K can be itera-
tively constructed using the linear transformation (6) by adding further neigh-
bours, at each step, according to a clockwise, left-handed direction, as far as
condition (ii) is satisfied and the approximation Y meets the approximation Z
of the shape B, with which the similarity has to be established; that is, the two
approximations need to have the same size. We can thus express the notion of
pre-similarity, in which B is the reference category of A (to comply with defini-
tion (ii.)), as follows. Let A and B be two shapes and A = {xi, yi}i=1..N , B =
{xi, yi}i=1..M any instances of them. We say that A and B are pre-similar ac-
cording to linear transformations t1 and t2, and we denote it by ∼p according
to the following definition:

A(t1) ∼p B(t2) ≡ d(Σt1(A), ΣA) = 0 ∧ d(Σt2(B), ΣB) = 0 ∧ |t1(A)| = |t2(B)|

Here |.| is used to denote the size and ΣY is the empirical variance covariance
matrix of Y . Now, given that two shapes are pre-similar, then they are similar
with respect to the approximation (denoted by ∼A) according to:

A ∼A B ≡ A(t1) ∼p B(t2)∧
B(t2) = βA(t1)Γ + 1Nγ
 (7)

Here Γ : K × K is a rotation |Γ |=1, 1N is a vector of ones, β > 0 is a scalar
and γ : K × 1 is a translation, t1 and t2 indicate the linear transformation for
the approximation.

Finally, from the approximation a polygonal shape can be reconstructed, see
Figure 5, connecting the points set obtained with a line. Given the polygonal
approximation several distances on polygons, such as for example the turning
function ΘA of [4], the Hausdorff distance [21], or the Frechet distance (e.g. see
[2]) can be used to check the distance between the two shapes.

The experiments are described in Section 8.

6 Implicit Analysis

For the implicit component of recognition we consider a non-parametric density
estimation of the joint location-feature space. Let I = {xi, yi, ki,∇ki}i=1..N be
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the sample points in the implicit model of the image, where (xi, yi) = x denotes
the 2D coordinates of the i-th point, ki is the intensity of x, normalized, and ∇ki

is the gradient. Note that I might have been earlier smoothed by a Gaussian
filter. We consider a Gaussian kernel K = (1/2

√
2π) exp (−1/2u2), and the non-

parametric density as a product of kernels as follows:

f̂h(z) =
1
n

n∑
i=1

{ 4∏
j=1

h−1K(
zj −Xij

hj
)

}

Here each bandwidth is obtained from the median m as follows:

hj =
1
w

m(abs(Xij −m(Xij)))

where w depends on the standard normal distribution, at the points of the r, g, b
components of I. Densities of some of the objects in Figure 9 are illustrated in
Figure 6.

Fig. 6. Non-parametric density estimations with Gaussian Kernels. The first two ker-
nels are from the r and g component of the first two dogs in Figure 9, and the second
and third kernels are from the first two sofas in Figure 13.

Now, given two implicit models M1 and M2 of two images I1 and I2 we
establish their implicit similarity according to a information-theoretic distance
between their pdfs f̂1 and f̂2. We have, indeed, considered some of the distances
reported in [1]) and a recently introduced one (see [47]). The distances perfor-
mance, obtained by our experiments, is illustrated in Figure 7, note that we
have grouped the distances consistently with their module and have computed
in particular that of [47] according to our defined bandwidth. It is clear from
the graphs in Figure 7 that those performing better are the one of [47] and the
Bhattacharyya one. However Yang et Al. distance is particularly interesting for
non-parametric estimation because it does not require a previous computation
of the pdf, hence it is certainly the most suitable, beside being quite accurate, as
emerges from our experiments. The advantage of a non-parametric estimation is
due both to the fact that the number of components needs not to be known, and
to the greater adaptability to object represented by composite features. How-
ever the difficulty with non-parametric densities is the need to memorizing the
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Fig. 7. Two groups of information theoretic distances over the estimated pdf of the
objects illustrated in Figure 9. Ground truth is in light green.

Fig. 8. Similarity=0.27

whole shape, while with parametric models, such as Gaussian mixtures, only the
parameters need to be allocated.

Recently Jebara and Kondor (see [22,23]) have introduce a new class of kernels
that can be used with parametric models. Their general Probability Product
Kernel K is:

Kρ (p, p′) =
∫

p(x)ρp′(x)ρdx

With a close form solution for the exponential family distributions (see [5]). We
have thus considered also Gaussian mixtures and the expected likelihood kernel
proposed by Lyu in [31]. From these last experiments the results seem to be less
stable than the distances studied for non parametric densities. The experiments
for the distances on implicit shapes are reported in Section 8.

7 Combining Distances and Causal Relationships

In the previous sections we have described two methods for shape approximate
representation, namely the explicit and implicit ones, leading to two distance
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Fig. 9. Similarity=0.43

Fig. 10. Similarity=0.58

Fig. 11. Similarity=0.47

Fig. 12. Similarity=0.76

measures de, which is the distance between the polygons obtained by the trans-
formation associated with the Procrustes analysis, and the distance di, which is
the distance between the kernels representing the set of selected features of the
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shapes. As addressed in [16,17] each recovered part can constitute an hypothesis
of being the component of a structured object, and an hypothesis can be certainly
reinforced by the presence of some component which might be clearly identified,
such as a leg, or a ear, or a foot. This is a crucial aspect to be considered for
learning the combined similarity measure. We could suppose that the two dis-
tances, de and di can be linearly combined to form the distance d = αde + βdi,
but α and β are unknown. Because the probability that an object A belongs to
a category C depends on the distance between A and the elements of C one can
take α and β to be the likelihood ratio between the successful matches against
all the comparisons. For example in our experiments we have empirically estab-
lished a threshold on the basis of the correct matches against the whole amount
of tests. So the probability that A belongs to a category C given the background
knowledge D is:

P (A = C|D) =

∑
c∈C(αde(A, c) + βdi(A, c))U∑
d∈D(αde(A, d) + βdi(A, c))

(8)

Here U = I(αde + βdi > τ) is an indicator. To this end it is reasonable to
configure a model on the basis of structural relationships among the elements,
or on the basis of hierarchical relations. In this way, for example, exploiting
independence between certain elements, as in Bayesian networks, it would be
both possible to determine the parameters for the distance without any concern
about mutual information, and to add nodes to the network as soon as a certain
distance is learned. This would be facilitated if, on the basis of an excluded
middle principle peculiar to objects, it is assumed that an object cannot belong to
two categories at the same time. Therefore if B and D are independent categories
then the estimate of the parameters for A would be:

P (A = C|B, D) =
P (A = C|B)P (D|B, A = C)

P (D|B)

=
P (A = C|B)P (D|A = C)

P (D)
= P (A = C|B)P (A = C|D)

(9)

Therefore if one assume that there exists a network structure H, with parameters
θ (which in our case are the αi and βi) and Pa are the parents of the element
of the current category of interest for the observation at hand, then for ci ∈ C:

P (A = C|H, θ) =
n∏

i=1

P (A = ci|Pa(ci), θi,H)p(θi|H)

Which amount, indeed, to learning the parameters, i.e. to estimate P (θi|H), by
maximum likelihood estimation. It is easy to see that even under a different
setting, the problem of capturing the underlying structure of similarity between
objects and their parts, at the end reduce to the approach of [17] and other
analogous approaches, in which the model is based on fitting Gaussian mixtures
and hypotheses are mixture hidden variables recovered via the EM.
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Fig. 13. Similarity measures of non-parametric kernel densities, from 1 (left) to
4(right):

KL B Y
1 − 2 0.36 0.84 0.67
1 − 3 NaN 0.79 0.04
3 − 4 0.63 0.93 0.03

Fig. 14. Similarity measures of non-parametric kernel densities, from 1 (left) to
4(right):

KL B Y
1 − 2 0.81 0.59 0.008
1 − 3 0.067 0.78 0.006
1 − 4 0.19 0.81 0.002
2 − 3 0.09 0.71 0.019
2 − 4 0.4 0.78 0.004

The experiments are summarized by the graphs in Figure 17, we have con-
sidered the sensitivity at a cut point of 0.59 below this value we considered the
similarity accepted and above rejected, thus the cases of dissimilar shapes are
penalized. The ROC curve is illustrated in Figure 17.

8 Experiments

In this section we show the results of some of the experiments concerning the two
distance measures de and di with respect to explicit shape description (de) and im-
plicit shape description (di). In the first set of images, namely Figure 9, till Fig-
ure 12 we show two pairs of image sequences each composed of 4 images as follows.
The first is the input image. The second is the edge image obtained by edge detec-
tion (here we used Canny algorithm), after a smoothing with a Gaussian filter with
variance varying in [0.3 0.6] according to the entropy of the image. For instance
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Fig. 15. Similarity measures of non-parametric kernel densities, from 1 (left) to
4(right):

KL B Y
1 − 2 0.34 0.84 0.01
1 − 3 NaN 0.88 0.006
1 − 4 0.66 0.84 0.003
2 − 3 NaN 0.88 0.012
2 − 4 0.02 0.85 0.003
3 − 4 0.005 0.71 0.003

Fig. 16. Similarity measures of non-parametric kernel densities, from 1 (left) to
4(right):

KL B Y
1 − 2 0.62 0.82 0.006
1 − 3 0.99 0.70 0.009
1 − 4 NaN 0.69 0.005
1 − 5 NaN 0.85 0.028
2 − 3 0.06 0.70 0.007
2 − 4 0.66 0.70 0.011
2 − 5 0.9 0.65 0.015

the image of the second dog in Figure 9 has entropy e = −
∑

(p log(p)) = 6.67 and
we used a variance of 0.4 while the first dog has entropy 7.5 and we used a variance
of 0.5, according to the formula σ = (e103)/(NK) with N, K the size of the image.
The third image is the approximation obtained as described in Section 5. The last
image is the polygonal reconstruction obtained by the approximation.The value in
the caption of the two sequences denote the Procrustes distance computed between
the approximations. We do not report here the values of the other distances (e.g
the Hausdorff, the Frechet etc. and the distance based on the turning function),
computed over the polygonal reconstruction.
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Fig. 17.

In the second set of images we report on the similarity measures for the
non parametric kernel density. In particular we report on the three distances,
Kullback-Leibler (KL), Bhattacharyya coefficients (B) (as presented in [12]), and
Yang et Al. (Y) [47]. Note that while Bhattacharyya upperbound for similarity
is 1, the similarity measure of Yang et Al. is reversed, i.e. two distributions are
similar if their distance is closer to 0.

9 Conclusions

In this paper we have related the similarity between objects to their explicit and
implicit representation. In other words we have discussed how the approximation
of the shapes of two objects can influence their similarity. In particular we have
shown how to extend Procrustes distance to cope with a notion of similarity that is
not constrained to a rigid definition of form, by introducing the novel concept of in-
stance of a shape. We have also compared different similarity measures for the non-
parametric kernel density. Finally we have hinted on how these two distances could
be combined to learn a more reliable similarity measure, considering the causal re-
lations of an object with its part or categories, as represented by a Bayes network.

Acknowledgments. I have begun working on theory of perception with Gigina,
and despite most of her work has been on the mechanization of reasoning, she has
been interested in extending reasoning with perception. That’s why I thought
that dedicating this paper to her would have been a way to acknowledge her
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Abstract. Differential equations and agent-based models are different
formalisms which can be applied to describe the evolution of complex sys-
tems. In this paper, it is shown how differential equations can describe
interactions among agents: it is pointed out that their capabilities are
broader than is often assumed, and it is argued that such an approach
should be preferred whenever applicable. Also discussed are the circum-
stances in which it is necessary to resort to agent-based models, and a
rigorous approach is advocated in these cases. In particular, the relation-
ship between the model and a theory of the processes under consideration
provides both stimuli and constraints for the model. This relationship is
discussed both in general terms and with reference to a specific example,
which concerns a model of innovation processes.

1 Introduction

In this paper we will discuss some problems related to modelling and under-
standing complex systems. For the sake of definiteness we will mainly refer to
social systems (although some remarks apply also to other kinds of systems, e.g.
biological, artificial). This choice is largely motivated by the fact that Artificial
Intelligence methods can be particularly useful in describing the interactions
among different actors in a social setting.

The notion of “agent”, which is widespread in Artificial Intelligence1, has in-
deed contaminated several other disciplines, including Economics and the Science
of Complex Systems. In the former, agent-based models have even been proposed
as an alternative foundation of the discipline [2], in opposition to the so-called
neoclassical approach, which is still the prevailing paradigm.

1 The literature on this subject is too broad to even try a partial account; for a
textbook on AI which is based on the notion of agents see [16].
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A side affect of the pervasiveness of this metaphor is that the word “agent”
is used in the scientific literature with fairly different, although overlapping,
meanings – which differ not only among the various disciplines, but also within
each one. While this may sometimes be a source of confusion, the fuzziness of
this concept has been instrumental so far in helping the development of new
models and the transfer of ideas among disciplines.

Agents have been widely applied to describe the behaviour of complex systems,
in particular those which are able to adapt or to learn. Agent-based models
are usually contrasted to those based on differential, or difference, equations,
which are often easily dismissed because they are thought to represent an over-
simplified description of the real system. However, in so doing one gives up
a whole set of theorems and techniques which might be valuable in order to
understand the behaviour of strongly nonlinear systems.

In this paper, we will compare agent-based and equation-based approaches,
showing that the latter are more expressive than usually thought. We will also
stress that the supposed need for using a complicated “element” (the individual
unit) should be demonstrated and not simply given a priori, since even simple
elements can account for complicated behaviours.

Moreover, we will argue that the real advantages of agent-based modelling can
be found in those cases where the elements must have sophisticated information
processing capabilites and an internal structure, and where heterogeneity among
different elements cannot be easily accounted for by choosing different parameter
values.

However, a major difficulty in this kind of modelling is a lack of robust foun-
dations: the modeller is left, in a sense, with too much freedom to choose the
relevant variables and processes. Given the nonlinearity of agent-based models,
they may display very different behaviours, and it is possible that one of these
behaviours resembles some features observed in the social system one wants to
describe. However, since observational data are often scarce, this agreement pro-
vides only a weak argument in favour of the validity of the model itself.

In order to deal with this issue, it has been proposed to relate the behaviour of
the model to a theory of the social system. The relationship between theory and
model is discussed with reference to a specific example, that of an agent-based
model of innovation processes.

2 Agent-Based Models and Dynamical Equations

A formal dynamical model is a recipe which allows one to compute the future
history of a system, from the knowledge of its present state and of the history of
its interactions with the external environment, if any. The model may be deter-
ministic or stochastic; in the latter case it is possible to compute a probability
distribution of future histories, rather than a single outcome.

Let us suppose that the system is composed of a set of agents, interacting
with each other and with some “external” variables, i.e. variables whose time
evolution is not determined within the system itself. Such agents will belong to
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a single class or to a limited number of different classes. The agents which belong
to the same class are similar, but not necessarily identical to each other.

Such a system is often modelled by an agent-based model (ABM), where the
elements are described by suitable algorithms. The agents interact with each
other and with an “environment” which they inhabit.

Note however that also a system of difference (or differential) equations can
be described using an “agent” metaphor. For the sake of definiteness we will
consider here a system of time-discrete difference equations of the form

x(t + 1) = f(x(t)) (1)

where x = (x1, x2 . . .xN ). It would be straightforward to generalize the discus-
sion below to the case of ordinary differential equations.

One can think of N agents, each one with an associated numerical variable.
Agents interact in the way defined by Eq.1, which can also be given a graph
representation: the N agents are associated to the nodes of the graph, and there
is a direct link from node i to node k if xi(t) appears on the r.h.s of the equation
for xk(t + 1).

Note that the formalism of first order systems, like the one in Eq.1, can de-
scribe also higher order systems, where the values of the original state variables
at time t+1 are influenced by previous values at time t−1, t−2, etc. In order to
do so, it suffices to enlarge the set of state variables, including memory variables.
For example, a second-order equation of the form

x(t + 1) = f(x(t), x(t − 1)) (2)

could be replaced by the equivalent system

y(t + 1) = x(t) x(t + 1) = f(x(t), y(t)) (3)

Sometimes agents act at time t in response to their anticipation of future situa-
tions: this can also be described by introducing “forecast” variables, where e.g.
z(t) represents the forecast, at time t, of the value of x(t + 1).

For the sake of brevity we will refer both to systems of time-discrete difference
equations, like Eq. 1, as well as to their continuous-time analogue using the
term “differential equations” or the shorthand “ODE” (although it is usually
meant to indicate ordinary differential equations only). It is well known that
continuous-time equations and their discrete analogue can have very different
time behaviours, like in the case of the famous “logistic map” [21]. However, this
distinction is irrelevant for the purpose of the present paper, where the important
aspects are that i) interactions among agents can be described by these kind of
systems and that ii) in both cases useful analytical methods and theorems are
available.

From the paragraphs above one infers that ODE system formalism allows
arbitrarily long memory and arbitrary forecast time windows.

Whenever an equation-based description is possible, one may take advantage
of several theorems and properties which have been discovered in the long history
of these studies.
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Indeed, it is sometimes possible to provide an analytical solution for the evo-
lution of the state variables in time: in this case one obtains a great deal of
information about the system, because its behaviour is known at once for the
whole set of parameter values, avoiding the need to resort to endless simulations
to explore a large parameter space.

Even when analytical solutions which describe the whole time behaviour can-
not be found, it is sometimes possible to analytically obtain useful information
by studying the asymptotic dynamics of the system (the so-called “qualitative
analysis”of ODE, see e.g. [21] and further references quoted there). Let us recall
among these useful theorems, those concerning the stability of a fixed point us-
ing Lyapunov functions, and the Poincaré-Bendixson theorem on the existence
of limit cycles.

Another approach which can sometimes be applied in cases where the com-
plete analytical solutions cannot be found is that of finding “first integrals”, i.e.
conserved quantities which constrain the set of allowable solutions and allow us
to draw definite conclusions about the system’s possible states.

When analytical properties cannot be found, or are of limited help, it is nec-
essary to perform an analysis of the system behaviour in different regions of
parameter space. Indeed, in most models of complex systems, and in all those
which describe social systems, the values of some relevant parameters are not
precisely known, and it is well known that nonlinear systems can display very
different behaviours for different parameter values. Therefore, an extensive study
(sensitivity analysis) is necessary to draw reliable conclusions. This is required
both for ODE and ABM, but in the former case the search space is more con-
strained than in ABM, thus making the search less arbitrary.

3 The Expressive Power of Differential Equations

So, if equations present these advantages with respect to agent-based models,
why should we ever use the latter? The reason is that some properties which
agents are often required to possess can be cast in the form of a dynamical
system only with great difficulties and in an unnatural way.

The main weaknesses of differential equations in modelling social actors seem
related to the heterogeneity among different agents and to the information pro-
cessing capabilities of the agents. However, the ODE formalism is often too easily
dismissed: let us therefore analyze these aspects and try to understand to what
extent they can be handled using it.

Heterogeneity among different agents is very important in agent-based mod-
elling of social and economical systems, where it can provide a way to go beyond
the “representative agent” approach, typical of neoclassical economics. Yet in
ODE the only natural way to differentiate agents is by using different parameter
values.

However, the formalism of ODE might be stretched so as to make it possible
to “choose” between alternative behaviours, depending upon some parameter
values, e.g. by using Heaviside functions or interval characteristic functions.
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For example, an agent described by the following Eq. 4 can switch between two
different evolution functions f(x, y) or g(x, y) for its state variable x, depending
upon the fact that parameter p is greater or less than a threshold Θ (y collectively
denotes the other variables which affect the evolution of x; H(Θ) is defined as
being equal to 1 if its argument is greater than or equal to 0, H(Θ) = 0 if Θ < 0)

x(t + 1) = H(p−Θ)f(x(t), y(t)) + [1−H(p−Θ)]g(x(t), y(t)) (4)

While such an equation is formally compliant with ODE, it lacks the properties
of smoothness which are at the basis of many important properties and theorems
on such systems, which therefore are no longer valid in this case.

Moreover, this is only a limited form of heterogeneity: for example, it would
be very difficult to cast even in formally equation-like forms the process which
leads the different traders in the well known SFI stock-market model [17,1] to
develop their own different set of heuristic rules.

This observation leads us to another major reason why equation systems are
often inadequate, i.e. that they cannot capture the sophisticated information
processing capabilities of the agents which are sometimes required, which are
better described by algorithms.

According to the Bohm-Jacopini theorem, any algorithm can be built using
the three basic flow control structures: sequence, iteration, alternative. We have
already seen that alternative can somehow be handled by Heaviside functions,
so let us now turn to sequence and iteration.

Sequence is in a sense intrinsic to the difference equation model, but there
it follows a unique, global clock, while agents should often be able to perform
computations on time scales different from those of other agents. In this case,
one might still formally consider an ODE system, where some interactions take
place less frequently than others, so as to mimick the different time scales. These
relatively rare interactions might then describe interactions among agents.

For example, variable x of agent A may be updated at every time step ac-
cording to a rule which involves other variables from the same agent (y) and less
frequently according to the variables which refer to other agents (z). Let m(t) be
a random function defined as follows: mμ(t) = 1 if a random number generated
at time t with uniform probability between 0 and 1 has a value greater than or
equal to μ, mμ(t) = 0 otherwise. Then

x(t + 1) = f(x(t), y(t)) + mμ(t)g(x(t), y(t), z(t)) (5)

describes an agent which may have a fast internal dynamics and (if μ is suf-
ficiently close to 1) a much slower interaction with the other agents. Another
way of handling different clock frequencies makes use of periodic deterministic
functions instead of random functions.

If we want to represent a situation where agent i interacts with agent k only
when the latter is “ready”, we could introduce a Boolean variable b(t) which
takes the value “1” when k is ready (e.g. when one of its variables reaches a
critical threshold), and which takes the value “0” otherwise, and we could then
introduce a term in the equation for i which is multiplied times b(t): this term
would always vanish when k is not ready.
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If we were to use a continuous-time formalism, we could easily define variables
with different time scales. Many studies [8] have been devoted to systems like

dxi/dt = −γixi + fi(x1 . . . xN ) (6)

where γi describes a damping term, and the fi are nonlinear functions. By using
widely different damping constants one can describe variables which evolve on
different time scales.

Also in this case, like in that of the “alternative” control structure, we observe
that the kind of processing allowed by ODE is wider than usually thought.

Also the “iteration” structure might be mimicked to some extent by the ODE
system. Indeed, vector operations are primitives in ODE, and they allow one to
perform most of the operations which in computer languages are performed by
iteration structures. It is also straightforward to introduce a “counter” variable
which counts how many time steps have elapsed since a particular situation
occurs. If we want to perform an operation only for a finite amount of steps, this
can be achieved by introducing a Heaviside function which compares the value
of the counter with that of a threshold.

Here again, however, the use of Heaviside functions leads to a loss of many
important properties and theorems which make equations appealing.

Finally, it should also be noted that, while the birth of new agents and new
variables can be forced in ODE systems, the theoretical tools presently available
are not well suited to deal with these cases, unless very specific hypotheses are
introduced (as for example in some interaction network models [10,11]).

4 A Careful Approach to ABM

Therefore, in several important cases concerning social systems modelling, it
seems unavoidable to abandon the ODE approach in favour of an ABM. However,
we stress that this should be done only when needed, since abandoning the world
of equations has a high price: theorems are no longer available, widely different
behaviours of the system are possible, the space of possible alternatives to be
analyzed becomes very large, and great care must be exercised in interpreting
the model results.

A widespread belief is that, using a sufficient number of modifiable parameters,
one can describe almost everything. While this criticism has been raised initially
for empirical equation-based models, it holds a fortiori for ABM. We do not
believe this criticism to be completely true, as it has been shown by working
with several models of physical and biological systems, where comparison with
careful experimental results is possible. In these cases the “right”behaviours did
not show up, in spite of extensive parameter search, until one found out that
some key processes were missing, which needed to be included in the model
[4,18]. However, it is true that playing with decision rules and parameters makes
it possible to obtain very different behaviours, some of which may resemble those
which are actually observed. Due also to the fact that precise measurements are
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often lacking in social systems, so that model validation is at best weak, such a
resemblance may be due to chance, rather than to a deeper reason.

A point which is worth stressing is that the use of a complicated and so-
phisticated model of the individual agent (the “element” of the system) is not
a necessary condition to account for complex behaviours at the level of the
whole system. This is apparent from the many existing systems and models
where very simple elements give rise to behaviours which are “complex” in many
senses:

1. complex dynamics: many systems display very different dynamical behav-
iours, which are often described in terms of their asymptotic attractors, i.e.
fixed points, limit cycles, strange attractors [21]. Systems of three or more
differential equations, as well as one-dimensional iteration maps can display
all three types of attractors, as cellular automata and other lattice models
can do as well

2. self-organization: the interaction of simple elements (like molecules in a fluid
or in a laser, or cells in a cellular automaton, or ants in an ant colony, etc)
can give rise to emerging patterns in space and/or in time with striking
regularities [21,8]

3. computing properties: some classes of cellular automata have been proven to
possess the property of computational universality, i.e. they are equivalent
to a Turing machine [20]

A further remark in the direction of stressing the power of simplification comes
from the observation that, in many cases, a model with nonlinear interactions
among its elements can be substituted by an equivalent model with independent
elements - which are, however, no longer the same elements as before. In order
to make this somewhat obscure (and often overlooked) property clear we will
mention a specific example, which has been suggested by Auyang [3] and which
has the advantage of being fully amenable to mathematical treatment, namely
the oscillations in a crystal.

As Einstein suggested, since atoms perform an oscillatory motion around their
equilibrium positions, the crystal can be considered as a system of N harmonic
oscillators which, in a first approximation, behave independently of each other.
Their motion can be quantized according to the rules of quantum mechanics. A
better approximation would lead us to introduce coupling between the oscilla-
tions at nearby positions, but the description in terms of N coupled oscillators
can be demonstrated to be equivalent to a description which is again based on
N independent oscillators, which are however no longer interpreted as individ-
ual atoms moving around their equilibrium positions (these collective oscillation
modes can be quantized leading to the notion of phonons). A price which has
to be paid to achieve this description is that now the independent individuals
are no longer identical, as they have different oscillation frequencies. Thus the
independent individual approximation can still be used, but the “individuals”
should no longer be confused with the original oscillators: they are “representa-
tive individuals”, modified by the interactions.
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Similar remarks might apply also to economics, where the classical approach
is based upon a “representative agent” whose properties (e.g. perfect rationality,
infinite processing power, etc.) are highly unrealistic if applied to real human
beings. But if we interpret them as idealizations of a collective interaction of
real humans, then it is no longer possible to rule them out on the grounds
of their unrealism. To be precise, we agree that the neoclassical paradigm has
several limitations and that economics needs to be founded on more effective
bases, nonetheless we simply stress here that more solid arguments need to be
put forth, rather than insisting on the “unrealistic” features of the economic
agent.

Another major problem is that algorithmic models like ABM may be highly
arbitrary, so there is an embarasse de richesse and conceptual guidelines are
needed to constrain the set of allowable models.

Two major considerations may help to constrain the choice of the model. The
first point is that it is necessary to look for model behaviours which are robust
with respect to different model perturbations, which may involve changes in
parameter values and, to some extent, also in the choice of some of the functions
which describe the agent. If simulation results match the (limited, unprecise)
experimental data only for a limited set of parameter values, or e.g. for a very
particular kind of decision rule, then suitable reasons should be found to justify
this choice, before claiming that the model has anything to do with the real
system it is supposed to simulate.

The second methodological consideration is that a model may be strongly
constrained by its relationship with a theory of the social process which it is
supposed to describe. In this way, the model should concentrate on those as-
pects which the theory identifies as the most relevant, dropping out or dras-
tically simplifying a set of related, but less important aspects. This approach
is similar in some sense to that of classical hard science, but with an impor-
tant remark. A physical theory is composed of a set of equations and a set of
rules which relate the variables which appear in the equations to some measur-
able quantities. A theory of a social process is often cast in qualitative terms,
so formal modelling might capture some of its aspects but, in general, it is
not possible to introduce all the aspects of such a theory in a single formal
model.

Models may also be very useful in making the theoretical statements more
precise and above all to study the unfolding of the emergent properties which
are implicit in the theory, but in general they do not coincide with the theory
itself.

In some cases, the theory-model relationship is short-circuited, and the formal
model itself is presented as a theory of the process which it describes. While this is
certainly legitimate, the differences between theory and model which have been
highlighted above are often important, so an approach based on an interplay
between theory and model seems more powerful.

We will illustrate this approach in the following by referring to a specific
example.
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5 A Theory-Based ABM of Innovation Processes

Below, we will briefly describe a model that has been developed to study inno-
vation processes according to the approach outlined above, i.e. on the basis of a
theory of the phenomenon , which has been developed in recent years by Lane
and Maxfield [15,12]. The model, called I2M (Iscom Innovation Model) has been
developed within the EU FET project Iscom; it is rather complicated and, since
it is described in detail in [13,14], it will only be briefly summarized here.

The theory is fairly broad in scope and, a fortiori, it will also not be discussed,
but only sketched, here; in particular, it addresses the issue of how decision mak-
ers can deal with situations of “ontological” uncertainty, which cannot be han-
dled by probabilistic reasoning. The latter would require that different possible
alternatives be identified and their probability of occurrence estimated, while
in conditions of extreme uncertainty it is difficult even to identify the relevant
entities and relationships which will play a role in shaping the system’s future.
The authors found out that the condition of managers working in rapidly chang-
ing environments can be better described by such ontological uncertainty, and
instantiated their findings by careful studies of the development of new market
systems (in particular, the digital telephone switching technology introduced by
Rolm and the distributed control system Lonworks developed by another Silicon
Valley company, Echelon).

But, if uncertainty is so high, how can decision makers cope with it? Lane
and Maxfield claim that in these conditions the present situation is interpreted
on the basis of past histories, which are compared and even modified to aid in
making sense of the present.

The basic entities of the theory of Lane and Maxfield [15,12] are agents and
artefacts. Artefacts are given meanings by the agents that interact with them,
and agents play different roles. The meaning of artefacts cannot be understood
without taking into account the roles which different agents can play. Thus,
artefacts may be given different meanings by different agents, or by the same
agent at different times.

An important principle which is called “reciprocality”, essentially claims that
artefacts mediate interactions between agents, and vice versa, and that both
agents and artefacts are necessary for a proper understanding of the behaviour
of market systems. Therefore the theory concerns the agent-artefact space and
the processes which transform it.

The theory is particularly concerned with innovation, which is not just nov-
elty but, as used by Lane and Maxfield, a modification in agent-artefact space
which unleashes a cascade of further changes. The innovation may involve the
introduction of a new artefact, but also a change in relationships with other
agents, or even a new interpretation of an existing artefact. In order to make
this notion of “new interpretation” clearer, one may consider what happened to
personal computers that were introduced as “small computers”and soon became
a tool for office applications, displacing typewriters and the related technology.

In a sense, this theory can be seen as a theory of the interpretation of in-
novation, where interpretation actually means attribution of functionalities to
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artefacts, and of roles to agents. According to Lane and Maxfield, a new inter-
pretation of an artefact functionality can be put forth in the context of so-called
generative relationships. We will focus below on the role of these relationships.

By interacting, a few agents come to invent and share an interpretation, based
on the discovery of different perspectives and uses of existing or expected arte-
facts. The generative potential of a relationship may be assessed in terms of the
following criteria:

– heterogeneity: the agents are different from each other, they have different
features and different goals; the heterogeneity is not so intense as to prevent
communication and interaction

– aligned directedness: the agents are all interested in operating in the same
region (or in neighbouring regions) of agent-artefact space

– mutual directedness: the agents should be interested in interacting with each
other.

Moreover, agents must be allowed to interact and to take joint actions.
Lane and Maxfield further argue that, in a situation where innovations happen

at a very fast pace, predicting the future is impossible; so a better strategy would
be to identify those relationships that have the potential for generativeness, and
to foster them in order to effectively explore the new opportunities that can arise.
It is therefore very important to be able to estimate the “generative potential”
of the existing and prospective relationships.

This theory of innovation is highly sophisticated in describing the interac-
tions between different players in innovation processes, and it cannot be entirely
mapped onto a specific computer-based model. Therefore, the modelling activity
aims at developing models that are based on abstractions of some key aspects of
this theory, which has been stated by its authors in qualitative terms. Moreover,
while the theory has been developed on the basis of case studies involving the
interactions of a few agents, such a model may help in unfolding its consequences
when many different agents interact.

To relate to the Lane and Maxfield theory, the model must be such that the
meanings of artefacts are generated within the model itself, without resorting
to an external oracle to decide a priori which meanings are better than others.
Moreover, the roles of agents must also be generated within the model through
interactions among agents and artefacts.

In the I2M model agents can “produce” artefacts, which in turn can be used
by other agents to build their own artefacts, etc. An agent can produce several
artefacts for different agents (and it can sell one type of artefact to several
different customers). While this model may remind us of a production network,
it is intended at a fairly abstract level: the production network is one of the
simplest ways to enforce “purposeful” interactions among the agents.

Each agent has a set of recipes which allows it to build new artefacts from
existing ones. Agents can try to widen the set of their recipes by applying genetic
operators either to their own recipes or, by cooperating with another agent, to
the joint set of the recipes of both. Moreover, each agent has a store where its
products are put, and from where its customers can take them.
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The meaning of artefacts is just what agents do with them, while the role of
agents is defined by which artefacts they produce, with whom, and for whom.
The role of agents is also partly defined by the social network they are embedded
into. In this network, the so-called strong ties between two agents are mediated
by artefacts (i.e. two agents are linked by a strong tie if there is a customer-
supplier relationship between the two). There are also weak ties between two
agents (“acquaintances”) which refer to the fact that agent A knows something
about agent B (e.g. its products).

The value which an agent (say A) gives its relationship with another agent
B is summarized in a single numerical variable (the “vote”), which is composed
by the sum of two terms. The first term is increased or decreased based on the
history of supplier/customer interactions between A and B, while the second
term takes into account the results of previous joint cooperation in developing
new projects, if any. A parameter, which can be changed in different simulations,
determines the relative weight of these two terms.

A key point is the structure of artefact space. What is required is that the
space has an algebraic structure, and that suitable constructors can be defined to
build new artefacts by combining existing ones. For reasons discussed elsewhere
[14], we have adopted the number representation and the use of mathematical
operators, instead of e.g. binary strings [9], λ-calculus [6] or predicate calculus
[7]. Therefore the agents are “producers” of numbers by combination of other
numbers, and the recipes are defined by a sequence of operators.

Each agent is also endowed with a numerical variable (called its strength)
which measures how successful it has been so far: strength increases proportion-
ally to the number of artefacts which are sold and decreases proportionally to
the number of active recipes. Note however that strength, in the present version
of the model, cannot be interpreted as “money” since it is not conserved in the
interactions between two agents (if A and B interact, and ΔSA and ΔSB rep-
resent the change in strength of the two agents due to this interaction, it may
well happen that ΔSA#ΔSB).

As far as innovation is concerned, let us remark that an agent can invent new
recipes or eliminate old ones. In the present version of the model no new agents
are generated, while agents can die because of lack of inputs or of customers.

The model is asynchronous: at each time step an agent is selected for update,
and it tries to produce what its recipes allow it to do. So, for each recipe, it looks
for the input artefacts and, if they are present in the stocks of its suppliers, it
produces the output artefact and puts it into its stock (the supplier stocks are of
course reduced). Production is assumed to be fast, i.e. it does not take multiple
steps.

Besides performing the usual buy-and-sell dynamics, when its turn comes, an
agent can also decide to innovate. Innovation is a two step process, the first one
defines a goal, i.e. an artefact which the agent may add to the list of its product,
while the second step concerns the attempt at reaching the goal.

In the goal-setting phase, and agent chooses one of the existing types of arte-
facts (which, recall, is a number M) and then either tries to imitate it (i.e. its
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goal is equal to M) or it modifies it by a jump (i.e. by multiplying M times a
random number in a given range). It has been verified that imitation alone can
lead to a sustainable situation where, however, innovation eventually halts.

After setting its goal, an agent tries to reach it either by using the operators of
one of its recipes with different inputs, or by combining two recipes to generate a
new one with genetic algorithms. In this phase, the agent can decide to cooperate
with another agent, sharing the recipes of both in order to reach a common goal.
The propensity of an agent to cooperate is ruled by a parameter, while the choice
of the partner is usually made with a probability distribution biased in favour
of those agents which have a high vote.

6 The Behaviour of the Model

The behaviours of the model can be explored, and they can raise questions which
may feed back into the theory. Actually, the model results can either support the
theoretical claims or, in those cases which are more interesting, they can come
unexpected. Whenever this happens, it may be that the theory needs revision
or improvement, or that the model needs to be better tailored for its purposes,
or both. We will briefly comment below on some model behaviours, which are
discussed with greater detail in [19], and on their relationship to the theory.

One of the main reasons why agent-based models are considered important
in economics is the possibility of handling heterogeneous agents, overcoming the
limitations of the approach based solely on the description of a “representative
agent”. While I2M agents become heterogeneous because they develop different
recipes, using and producing different products, it is interesting to consider a
further source of heterogeneity, associated with the fact that some parameters
may take different values for different agents.

We consider first those parameters which are related to the propensity and
style of innovation: agents in I2M are“natural-born innovators”that try to intro-
duce new artefacts with a certain pace, ruled by a specific parameter. Precisely,
the attempt to innovate is decided on a stochastic basis, and this parameter rules
the average rate. Another important parameter which affects the way in which
agents innovate is the jump range.

Different kinds of experiments can be performed by considering i) a compari-
son between systems which are homogeneous (i.e. all the agents have the same
value for the relevant parameters) but these parameters take different values
in different worlds and ii) a heterogeneous system where agents with different
values for the relevant parameters coexist and interact.

Concerning innovation frequency, the model results are unambiguous: if we
compare two different homogeneous systems, one in which agents innovate fre-
quently and the other where innovation takes place more rarely, the former sys-
tem gives rise to a much higher number of artefacts. Agents produce more and
are more robust in this case. And if we introduce in the same heterogeneous sys-
tem both frequent innovators and rare innovators, the former ones outperform
the latter (they produce and sell more artefacts).
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On the other hand, the dependency of the system results on the jump range
is different, and homogeneous systems where this parameter takes a high value
are more fragile than others (a higher percentage of agents die out in the simula-
tions). Indeed, since a higher range increases the chance of developing an artefact
in an empty region of artefact space, this behaviour can be easily understood
and might even have been guessed in advance (although it is indeed difficult to
guess a priori the outcomes of this model).

There is however an interesting behaviour which is observed in heterogeneous
systems, which are inhabited by two kinds of agents which differ for the jump
range. In this case the system shows a robust behaviour and those agents which
belong to the group with the higher range not only survive, but perform better
than the others.

This might be explained in terms of a bunch of agents whose goals are distant
from the existing artefacts, which are followed by other agents which perform
smaller jumps. These more prudent agents improve the effectiveness of the “long
jumpers”, which could not even survive if they were all of the same kind. One in-
deed observes a kind of cooperation between daring innovators and more prudent
ones, which follow the former in the new regions of artefact space.

This behaviour seems to resemble some cases which have actually been ob-
served in industrial districts and market systems. However, the Lane and Max-
field theory has been developed with a focus on the interaction among few agents.
The use of a model with several agents shows that this behaviour emerges out
of their interactions, and thus bridges a gap between the phenomena already
described by the theory and system-level interesting properties.

Let us now focus on the important issue of the relationships among agents in
order to build new artefacts. The model allows us to compare different strategies
for the choice of the partners in such an endeavour. It is for example possible
to compare a purely random choice (where the partner is chosen with uniform
probability among all the agents which are known) and a choice directed by
some criterion. In particular, we have tested a choice driven by the vote, which
is a function of the past interactions between two agents and which can be
considered a model analogue of the notion of “mutual directedness” (cfr. the
previous Section).

It has been observed that this latter way of choosing a partner performs
consistently better than the random choice, thus confirming the theoretical ex-
pectations. This point requires perhaps clarification: the theory makes claims
concerning relationships between two, or among a few agents, while the model
deals with tens or hundreds of them. So the model provides support to the claim
that a large set of agents seeking their innovation partners on the basis of certain
types of relationship can give rise to a higher rate of innovation than random
search.

Moreover, collaborations tend to last long. These results may suggest that
stable collaborations can be useful for improving the system performances, a
point which should stimulate further theoretical developments.
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On the other hand, it is also interesting to observe that different criteria for
partner selection (based either on the heterogeneity between the agents, or on
the closeness of their goals) lead to performances which are quantitatively similar
to those observed using the vote, although the average number of lasting col-
laborations per agent, and their average duration, may be remarkably different.
Although the differences in performances are small, there are some preliminary
indications that the alignment in artefact space, i.e. the fact that one chooses a
partner with a goal close to its own, may be the most effective criterion among
those which have been tested. This may also be a starting point for theoretical
developments, since the theory has not yet provided any particular claim about
the relative weight of the different factors which contribute to the generativity
of a relationship.

Another interesting example of the possible dialogue between model and the-
ory concerns the role of goal-driven behaviour. What would happen if the agents
had no goal, but produced their innovations by simply applying one of their
recipes to inputs chosen at random?

Note that this problem touches a very deep issue, i.e. the relationship between
biological and social evolution. One of the facets of this problem which is partic-
ularly intriguing is the comparison between the different mechanisms that drive
the introduction of novelties: random changes (the rule in biology) versus goal-
oriented i.e. intentional changes in human systems. But what happens in this
latter case in an unpredictable world, where both the system’s own dynamics
and the results of our intentional behaviour cannot be forecasted? Is there any
difference between the two cases?

Note that the mechanism of the jump, which implies multiplication of the
initial target times a random number, can mimick the choice of a goal in a
situation which is essentially unpredictable. So, it is interesting to consider what
are the main differences between a system endowed with this kind of goal and
another one which operates in a biological-like fashion.

This latter condition can be simulated by supposing that, when an agent
innovates, it simply takes the ordered list of operators of one of its existing
recipes and chooses new inputs - without defining a goal and trying to reach it.
We will call these no-goal (NG for short) systems.

First of all, it turns out that a crucial parameter for the fate of the goal-
oriented system is the persistence of the goal, i.e. the probability that it maintains
the same goal even if one or more attempts at reaching it have failed. It has been
observed that systems with high persistence are really fragile, and many agents
die out quickly; therefore it is better to compare low-persistence goal-oriented
(LPG) systems with those without a goal.

The main results are summarized in the following remarks. LPG systems are
much faster than NG systems in exploring new regions of artefact space: both
the artefact diversity (i.e. the number of different types) and the diameter of
artefact space (i.e. the difference between the highest and the lowest number)
are much higher than those of the NG system in the first few thousand steps
of the simulation. However, LPG systems seem to become saturated, and the
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number of recipes per agent reaches a plateau. NG systems, on the other hand,
are much slower in adventuring in new regions, but they show a continuous albeit
slow growth of the different performance measures (diversity, diameter, number
of recipes per agent). The exploration of the space of artefacts is slower, but the
system is more robust than the one with explicit goals.

Using particular initial conditions, LPG systems show a high agent mortality
while NG systems do not, thus confirming the hypothesis that the former are
more fragile.

These results have been achieved in a particular model, which reflects some
aspects of a particular theory. But how general is this finding? Of course we are
considering a rather extreme case of an unpredictable world, and goal-oriented
behaviour might be more rewarding when the future can be better forecasted
(for example, by endowing the agents with greater intelligence). On the other
hand, the use of zero-intelligence economic agents has recently been proposed [5].
The observation of these behaviours might lead to a re-thinking of some of the
theoretical concepts or, otherwise, to devising more sophisticated mechanisms
to locate the goal, e.g. those based on a wider knowledge of other agents and on
reasoning methods , and to verify whether they can lead to a markedly different
behaviour.

Interestingly enough, studies on the comparison between NG and LPG sys-
tems may stimulate theoretical developments concerning not only innovation
processes, but also the relationships between biological and social change.

The important aspects to be stressed in all the above examples (and many
others, see [19]) is the creation of a loop between model and theory that can
strengthen both.

7 Conclusions

In this paper, we have stressed that systems of differential equations can de-
scribe interactions among agents, and that they should be preferred whenever
applicable. The alternative provided by agent-based models may seem simpler
and easier to understand to the non-mathematically oriented researcher, but the
strong nonlinearities are only hidden by the ABM language, and certainly not
eliminated. We have also shown that systems of equations can describe many of
the characteristics that agents must have.

On the other hand, there are cases when the ABM formalism is required: in
particular they are unavoidable if the agents must have sophisticated information
processing capabilities and an internal structure.

In these case we have argued that one should try to keep the model as simple
as possible, but it often turns out that “as simple as possible” means rather
complicated. A rigorous approach requires exploring the space of parameters
and searching for robust model properties.

Another (complementary) route to rigour can be provided by the relationship
with a theory of the social phenomenon. The modelling activity may provide
a way to make the statements rigorous, and to unfold the system-level conse-
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quences of the theoretical assumptions. What is most important, the modelling
activity may engage in a fruitful dialogue with the theoretical aspects which may
improve both, as it has been suggested in the brief discussion of a model and a
theory of innovation processes.
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Abstract. Robots are autonomous agents whose actions are performed
in the real world during a period of time. There are a number of gen-
eral constraints on such actions, for example that the same action can
not have two separate instances during overlapping time intervals, or
restrictions that are due to which state variables affect the action or
are affected by it. Each process in the robot’s cognitive system that is
to request the initiation of an action must respect those restrictions.
In this article we describe the design and formal characterization of
a separate process, called an action coordinator, that manages these
restrictions.

1 Topic

The familiar three-level architecture for robotic systems with high-level auton-
omy is defined in terms of a lower ‘process’ layer, a middle ‘reactive’ layer, and an
upper ‘deliberative’ layer. Such an architecture may be natural if the activities
of the robotic system are defined in terms of ‘actions’ with extended duration
in time. The deliberative layer will then be in charge of prediction and planning
in terms of such actions. It will also be capable of invoking actions through a
request to the reactive layer. The current state of the reactive layer at each point
in time will specify what are the currently ongoing actions and the current state
within the action, at least on a qualitative level. This current state, in turn, de-
fines the operational mode for the control algorithms that are used in the process
layer.

In such an architecture there are a number of restrictions on how actions
can be performed. The exact nature of these restrictions is an aspect of the
semantics for the actions, as represented by a particular logic of actions and
change. In the Cognitive Robotics Logic [4], the execution of an action a during
and interval of time from s to t is expressed by the formula D([s, t], a), and one
of the restrictions is that if D([s, t], a) and D([s′, t′], a) hold, then the intervals
[s, t] and [s′, t′] can not overlap in more than one single timepoint, unless they
are identical. In other words, we allow s′ = t but not s < s′ < t. There are also a
number of other restrictions, for example those having to do with the limitations
on when a particular action is executable in itself.

O. Stock and M. Schaerf (Eds.): Aiello Festschrift, LNAI 4155, pp. 177–191, 2006.
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The task of enforcing such restrictions is assigned to the deliberative layer in
the classical three-level architecture. For example, this layer must be designed in
such a way that it will not invoke an action that is already going on. This means
that the deliberative layer must be one coherent entity. The generic three-layer
model is therefore not easily compatible with a distributed-AI approach where
the deliberative function is organized as a collection of independent agents each
of which has the capability of invoking actions. For example, it is not sufficient
to just queue the action requests of individual agents, since an agent may wish
to retract or add requests if an action can not be executed at the time or in the
way that this agent has requested.

In order to accomodate a collection of independent ‘agents’ that together con-
stitute the deliberative layer of the robotic system, it is natural to separate the
enforcement of restrictions on actions into an architectural unit of its own. We
shall refer to it as the action coordinator. The architecture will now consist of
four layers rather than three: the process layer, the reactive layer, the action
coordinator, and the swarm of deliberative agents. In procedural terms, every
such agent is able to issue action requests to the action coordinator, and the
action coordinator will send action initiation commands to the reactive layer if
and when it determines that this is appropriate. It will also inform the deliber-
ative agents about whether their requests have been accepted or not, and about
the termination of the actions they requested.

The function of the action coordinator is reminiscent of the concept of elec-
tronic institutions that has emerged in the field of distributed AI, particularly
in the context of auctions and negotiation in a community of agents[1]. One may
think of the action coordinator as a kind of electronic institution that is spe-
cialized for robotic applications which are characterized by layered architectures
and actions with duration.

The procedures surrounding the action coordinator can be understood in
terms of message-passing for the purpose of invocation and information. How-
ever, in a logicist framework where both the deliberative agents and the ac-
tions themselves are characterized in logic, it is appropriate to also use logic
for characterizing the action coordinator and its interactions with the agents.
This has the advantage that additional, complex behavior can be ‘programmed’
in a clear and transparent way into the action coordinator. In the present ar-
ticle we shall describe the action coordinator using Cognitive Robotics Logic,
CRL [4].

2 Cognitive Robotics Logic

The present section contains the basic definitions for CRL, using the same pre-
sentation as in [3] except that the use of composite actions has been removed.
We retain the constructs for success and failure of actions for continuity, and
in order to lay the ground for future extension of the results presented here,
although those constructs will not be used in the present article.
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2.1 Standard Constructs in Logics with Explicit Time

The following is the basic notation that is generally used, with minor variations,
when time and action is represented using an explicit time domain. Three pri-
mary predicates are used. The predicates H for Holds and D for Do are defined
as follows. H(t, p) says that the “propositional fluent” (1) p holds at time t. In
other words, p is reified and H(t, p) is the same as p(t) in the case where p is
atomic. D([s, t], a) says that the action a is performed over exactly the closed
temporal interval [s, t]. Open and semiopen intervals are denoted (s, t), [s, t),
and (s, t] as usual.

Non-propositional fluents are also admitted, using the notation H(t, f : v)
where f : v is the propositional fluent saying that the fluent f has the value v.
Fluent-valued functions are allowed, and one of their uses is to define fluents for
properties of objects. For example, ageof(p) may be the fluent for the age of the
person p, used as in H(1998, ageof(john) : 36).

In the full notation there is also a third predicate, X, that is pronounced
occludes and is used for characterizing exceptions from the assumption of conti-
nuity of the value of fluents. Continuity includes persistence as a special case, for
discrete-valued fluents. X(s, f) expresses that at time s, the value of the fluent
f is not required to be continuous or to persist.

In all cases, s and t are timepoints (usually s for starting time and t for
termination time) and a is an action. We assume that time is discrete and linear,
and let θt represent the timepoint that precedes t. s < t is defined as s = θnt
for some n > 0.

Logics with explicit time are usually used in such a way that each model of
the axioms characterizes one possible history in the world, not a tree of possible
histories. Alternative histories are represented by different models(2). Therefore,
a timepoint t is sufficient for identifying the state of the world at time t in the
present model.

2.2 Ontology for Invocation and Success

For each kind of action, in many applications, there are certain conditions that
must be satisfied in order to be able to say that the action can be initiated
at all. Once initiated, it can either succeed or fail. The distinctions between
inapplicability, failure, and success depend both on the application as such, and

1 We have previously tried to maintain a terminological distinction between fluent as
a function from timepoints to corresponding values, and a feature as a formal object
that designates a fluent. With that terminology, the p and f that occur in the second
argument of H are features, not fluents. Similarly, the functions inv, app, and fail
that will be introduced later in this section, are functions from actions to features.
However, since it is so common to use the word ’fluent’ both for the function and
its designator, we follow that practice here.

2 However, it was shown in [2] that it is straightforward to generalize the time domain
so that it also accounts for the case of branching time.
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on how one chooses to model it. In this subsection we specify the ontology (3)
for these concepts which will be used in the formalization in the next section.

An invocation of an action can cause it to begin its execution, which ends
with either success or failure. The matter is complicated by the requirement to
represent that it is sometimes impossible to execute an action. In our approach,
invocation of an action is possible at any time, but the invocation does not
necessarily lead to the execution of the action. In particular, it does not if the
action is inapplicable by definition (for example, turning on the light in a room
where there is no light) or if the action is already executing.

When an action begins to execute, it is said to initiate. Once an action has
(been) initiated, it must ultimately either succeed or fail. The distinction be-
tween success and failure is done on the following pragmatic grounds: planning
goal achievement is done using the assumption that actions succeed, and using
knowledge about their results when they do succeed. The case where an action
fails is dealt with on a case-by-case basis once the failure has occurred.

For the same reasons, we assume that applicability is defined in such a way
that it can be determined at planning time. Those conditions that prevent an ac-
tion from having its effect and that can in general not be detected until execution
time, must be modelled as failure and not as inapplicability(4).

Each action has a temporal duration, which must be an interval that is greater
than a single point except for some specific cases defined below. Note, in partic-
ular, that when an action is not applicable, it is considered not to execute, it is
not considered to fail instantly.

2.3 Syntax for Invocation and Success

Two representations will be used for the expression of success, failure, and ap-
plicability of actions. In one, we use specially constructed fluents, in the other,
variants of the D predicate that distinguish between action success and action
failure. The former representation is considered as the basic one, and the latter
is introduced as abbreviations or ‘macros’ that facilitate the writing of effect
rules for actions.

The following are three functions from actions to propositional fluents:
inv, where H(s, inv(a)) says that the action a is invoked at time s. At all

other times, H(s, inv(a)) is false.
app, where H(s, app(a)) says that the action a is applicable at time s.
fail, where H(t, fail(a)) says that the action a terminated with failure at time

t. H(t, fail(a)) is false at all times when the action is not executing, or when it
is executing but not terminating, or when it is terminating successfully.

In addition, we mention one function from propositional fluents to actions:
3 We mean ontology in the classical sense of the word, not merely a taxonomical

structure.
4 To be precise, in a well-formed plan, each action must be applicable in any state of

the world that may result, according to the effect laws, if the preceding actions are
successful. If some of them fail then later actions may be inapplicable in a way that
can only be detected at plan execution time.
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test, where test(p) or test(f : v) is an action that is always applicable,
whose duration is always instantaneous (expressed by D([s, s], test(p))), and that
satisfies

H(s, fail(test(p)))↔ ¬H(s, p)

In other words, test(p) succeeds at time s iff p is true at s.
Notice that this function does not represent an action, and questions about

the executability of the tests, their possible side-effects, and the precision of the
results are not relevant for it. It is simply a kind of conditional operator in the
logic(5).

The following abbreviation is introduced:

Dv(s, a) for H(s, inv(a))∧ (¬H(s, app(a))∨∃s′∃t[D([s′, t], a)∧ s′ < s < t]): the
action a is invoked at time t but it is either not applicable, or already executing
at that time. (This is the case where invocation of the action does not initiate
an execution).

The priority of the propositional connectives is defined so that a → b∧c means
a → (b ∧ c).

2.4 Axiomatic Characterization

The following set of axioms characterizes the obvious properties of these
relations.

S1. If an action is being executed, then it must have been invoked and be appli-
cable and non-executing at invocation time:

D([s, t], a) → H(s, inv(a)) ∧ ¬Dv(s, a)

This implies:
D([s, t], a)→ H(s, inv(a)) ∧ H(s, app(a))∧

¬∃s′∃t[D([s′, t], a) ∧ s′ < s < t]

S2. If an action is invoked, then it is executed from that time on, unless it is
inapplicable or already executing:

H(s, inv(a))→ ∃t[s ≤ t ∧D([s, t], a)] ∨ Dv(s, a)

The full version of this axiom is slightly larger in order to also allow for composite
actions.

S3. An action can not take place during overlapping intervals:

D([s, t], a) ∧ D([s′, t′], a) ∧ s ≤ s′ < t→ s = s′ ∧ t = t′

5 Actually, the test operator is mostly motivated for its use in composite action expres-
sions where it makes it possible to define conditional actions. The use of composite
actions is excluded in the present article, but we retain the definitions for the test
function anyway since it is integrated with the basic axioms.
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S4,S5. Actions of the form test(p) are always applicable, and instantaneous:

H(s, app(test(p)))

D([s, t], test(p))→ s = t

S6. All other actions execute over extended periods of time: never immediately,
except for actions of the form test(p):

D([s, t], a) → s < t ∨ ∃p[a = test(p)]

S7. Actions only fail at the end of their execution:

H(t, fail(a))→ ∃s[D([s, t], a)]

S8. Definition of success for actions of the form test(a):

D([s, s], test(p))→ (H(s, fail(test(p)))↔ ¬H(s, p))

Several of these axioms capture desirable properties directly. For others, all the
consequences are not immediately obvious. One useful consequence is the fol-
lowing theorem, previously reported in [3]:

Theorem 1. In any model for the axiom S3, let {[si, ti]}i be the set of all in-
tervals such that D([si, ti], a) for a specific action a. Then there is some ordering
of these intervals such that si < si+1 and ti ≤ si+1 for all i.

Proof. Suppose the proposition does not hold, and choose an order of the pairs
such that si ≤ si+1, and where each pair only occurs once. Also, choose j so
that either sj = sj+1, or sj < sj+1 < tj . If no such j is to be found, then the
ordering already satisfies the condition in the proposition.

However, the case sj = sj+1, tj �= tj+1 contradicts axiom (S3). The case
sj < sj+1 < tj also contradicts axiom (S3). This concludes the proof. QED.

The value of this observation is that through it, it makes sense to use the fluent
fail(a) for characterizing the success or failure of an action with extended dura-
tion. If theorem 1 were not to hold, then it would not be clear from H(t, fail(a))
which invocation the failure referred to. This consideration is also the reason for
the choice manifested in axiom S1: if an action a is invoked while it is already in
the midst of executing, then it is not represented as “failing”, since this would
confuse matters with respect to the already executing instance. Instead, we use
the convention that it is invoked, possibly applicable, but it does not get to
execute from that starting time.

We also obtain at once:

Theorem 2. In any model for the axioms S1–S8, if D([s, t], a) and H(u, fail(a))
for some u in (s, t], then t = u.

Informally, we can think of each model in dynamical terms as a possible history
in the world being described, and what this theorem says is that if an action
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is invoked and begins to execute, then if H(u, fail(a)) becomes true at some
timepoint u during the execution, the action halts and ends with failure, and if
it is able to proceed until its normal ending without H(u, fail(a)) becoming true
at any time, then it ends with success.

Any use of this logic will naturally be concerned with the effects of actions.
In Cognitive Robotics Logic and its background, the Features and Fluents ap-
proach, as well as its successors, this is specified using action laws, which in
particular make use of the occlusion predicate, and in combination with assump-
tions of persistence. In [6] we showed how this logic can be used for specifying
an architecture for a logic-based cognitive robotic system where rules specify-
ing failure conditions for an action can be written as implications where the
consequent has the form H(u, fail(a)).

2.5 Examples

The following additional abbreviations are introduced. They are generally useful
for writing effect rules and applicability restrictions rules for actions.

G(s, a) for H(s, inv(a)): the action a is invoked (“go”) at time s
A(s, a) for H(s, app(a)): the action a is applicable at time s
Ds([s, t], a) for D([s, t], a)∧¬H(t, fail(a)): the action a is executed successfully

over the time interval [s, t], it starts at time s and terminates with success at
time t.

Df([s, t], a) for D([s, t], a)∧H(t, fail(a)): the action a is executed but fails over
the time interval [s, t], it starts at time s and terminates with failure at time t.

Dc([s, t], a) for ∃u[D([s, u], a) ∧ t ≤ u]: the action a is being executed, the
execution started at time s and has not been terminated before time t. (It may
terminate at t or later).

For both Ds and Df , s is the time when the action was invoked, and t is the
exact time when it concludes with success or failure.

As an example of the use of this notation, the following formula states that a
condition ϕ guarantees that an action always succeeds:

H(s, ϕ) ∧ G(s, a) → ∃t[Ds([s, t], a)]

Ordinary action laws specify the action’s effects when it succeeds. They are
therefore written as usual and with Ds on the antecedent side: if preconditions
apply and the action is performed successfully, then the postconditions result.

As a second example, consider the case of actions that are described in terms of
a precondition, a prevail condition, and a postcondition, where the postcondition
is at the same time the termination condition for the action [7]. The prevail
condition must be satisfied throughout the execution of the action; if it is violated
then the action fails. Simple pre/ post/ prevail action definitions can be expressed
as follows, if ϕa is the precondition of the action a, ωa is the postcondition, and
ψa is the prevail condition:

A(s, a)↔ H(s, ϕa)
Ds([s, t], a)→ H(t, ψa) ∧ H(t, ωa)
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A(s, a) ∧ Dc([s, t], a) ∧ u ∈ [s, t)→ H(u, ψa) ∧ ¬H(u, ωa)
Dc([s, t], a) ∧ ¬H(t, ψa)→ Df([s, t], a)

The traditional case of only pre- and postconditions is easily obtained by
selecting ψa as tautology.

3 The Action Coordinator

We now proceed to using the Cognitive Robotics Logic for specifying the action
coordinator as described in section 1. We limit the problem to a relatively simple
action coordinator that does not take the success and failure of actions into
account.

3.1 CRL Formulation

Starting from the CRL formalism that was introduced in the previous section,
we define the action coordinator by extending the logic with an additional object
domain for agents, and with two new fluent-valued functions, inva and asta. The
fluent inva(g, a) will express an invocation of the action a by the agent g (i.e.,
a request for its initiation). The proposition H(s, inv(g, a)) is true iff the agent
g invokes a at time s.

Notice the difference between inv(a) that was introduced above, and inva(g, a)
that is introduced here. The relation between them will be specified and proved
below.

The action coordinator’s response to an invocation is represented using the
funtion asta, for ‘action state’. At each point in time, the fluent asta(g, a) has a
value representing the current response to an invocation of a that has previously
been issued by the agent g. The invocation is represented as a momentary con-
dition, but the response is represented as something that applies over an interval
of time. This frees the agents from ‘remembering’(6) what responses they have
received for their invocations.

The value of asta(g, a) shall be one of the following discrete values. If the
action is executed during the interval [s, t] on behalf of the agent g, then the
value is stex (for ‘start executing’) at initiation time s, ex (for ‘executing’) in the
interior of the interval, and nil at time t. Before any such execution has taken
place, the value is also nil. If an invocation inva(g, a) occurs when the value of
asta(g, a) is nil, then it switches to pend, for ‘pending’. It may retain this value
for some time, but it can also switch to either of stex meaning that the invocation
was honored by initiating the action, or to ref meaning that the invocation was
refused. During and after execution the value is ex and nil as already explained,
and after execution the action is available for initiation again. If the action has
been refused, on the other hand, a renewed invocation inva(g, a) will change the
value of asta(g, a) from ref to pend.

6 I.e., from having to retain that information in its local state.
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The intended structure of possible transitions is illustrated in figure 1. Notice
that the stex state can only be visited during one single timestep at a time,
whereas all the other states can remain for several timesteps.
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�
�

�
�

���
nil ex

pend stexref

Fig. 1. State transitions for asta(g,a)

The transition from one value to another depends on the following factors. The
transitions from pend to stex or ref represent the decisions of the coordinator.
The transitions from stex to ex and from ex to nil, or directly from stex to nil
reflect the execution of the actions, and normally they are obtained from the
process layer where each action is executed. The transitions from nil or ref to
pend represent how the action coordinator receives and administrates invocations
of actions by the agents.

This transition structure is intended to represent an upper bound on admis-
sible transitions. Specific policies in the action coordinator can be represented
by restricting the transitions from pend to stex or ref, but not by relaxing any
of the transitions described here.

However, one extension that may be of interest is to have a way for agents to
discontinue an ongoing action. In this case the transition from ex to nil is caused
by a message to the action coordinator from a deliberative agent, and not from
the process layer. This requires an extension to the formalism for expressing how
the agent sends that message, and it is not considered in the present article.

3.2 Axioms for the CRL Formulation

The system of transition rules can be expressed using the following axioms.
Recall that the function θ represents the predecessor of a given timepoint, and
s < t represents that s = θnt for some n > 0. We introduce the auxiliary
predicate Blocked(s, a) that characterizes those conditions where an action can
not initiate even if some agent invokes it. It is formally defined as follows:

NS1. Blocked(s, a)↔ ¬H(s, app(a)) ∨ ∃g[H(s, acta(g, a) : ex)]

The following axioms characterize the generic action coordinator.

K0. Fluents of the form acta(g, a) take (at most) one value at each point in time,
chosen among the five values mentioned above.
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H(s, acta(g, a) : r) ∧H(s, acta(g, a) : r′)→
r = r′ ∧ (r = ex ∨ r = pend ∨ r = nil ∨ r = ref ∨ r = stex)
We suppose that acta(g, a) also has a value for each combination of s, g, and a,
but an axiom to this effect does not appear to be needed for the proofs being
made below.

K1. If an action is being executed, then it must have been initiated, and from the
point of view of each initiating agent it goes through the states stex, ex, and nil:

D([s, t], a) → s < t ∧ ∃g[H(s, acta(g, a) : stex)]∧
∀g[H(s, acta(g, a) : stex) → H(t, acta(g, a) : nil)∧
∀u[s < u < t→ H(u, acta(g, a) : ex)]]

K2. If an action initiates, then it is executed from that time on and in a finite
interval of time, so that it has an ending time. It can only initiate if it is applicable
at that point in time:

H(s, asta(g, a) : stex)→ H(s, app(a)) ∧ ∃t[D([s, t], a)]

K3. If an action is executing and not initiating from the point of view of an agent,
then it must have been in that state or initiating in the preceding timepoint with
respect to the same agent:

H(s, asta(g, a) : ex) → H(θs, asta(g, a) : ex) ∨H(θs, asta(g, a) : stex)

K4. An action can only initiate for an agent if it was pending for that agent at
the preceding timepoint:

H(s, acta(g, a) : stex)→ H(θs, asta(g, a) : pend)

K5. If an action is executing for one agent, or if it is inapplicable, then it can
not be initiated for any agent:

Blocked(s, a)→ ∀g[¬H(s, asta(g, a) : stex)]

K6. Consider an action a that is inert (nil) or refused for a particular agent at
a particular timepoint. If it is invoked by the agent then it must be pending at
the next timepoint, otherwise it must retain the same value.

H(θs, asta(g, a) : r) ∧ (r = nil ∨ r = ref)→
(H(s, inva(g, a))→ H(s, asta(g, a) : pend))∧
(¬H(s, inva(g, a))→ H(s, asta(g, a) : r))

K7. An action can only switch from another state to being pending as the result
of an invocation from the agent in question:

(H(s, asta(g, a) : pend) ∧ H(θs, asta(g, a) : r) ∧ r �= pend) → H(s, inva(g, a))

K8. If an action is pending from the point of view of an agent, then in the next
timestep it must be initiated, refused, or still pending:

H(θs, asta(g, a) : pend) →
H(s, asta(g, a) : stex) ∨ H(s, asta(g, a) : ref) ∨ H(s, asta(g, a) : pend)
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K9. There exists a timepoint s0 such that asta(g, a) has the value nil for all times
≤ s0:
∃s0∀s, g, a[s ≤ s0 → H(s, asta(g, a) : nil)]

We also introduce the following policy rule.

P1. If an action is pending and applicable, then initiate it:
H(θs, asta(g, a) : pend) ∧ ¬Blocked(s, a)→ H(s, acta(g, a) : stex)

This policy rule is the first example of a rule that restricts the transitions for
an action from being pending, to being initiated or refused. This particular rule
forces a pending action to initiate as soon as it is not blocked by not being
applicable, or by another instance of the same action being executed. One can of
course think of alternative rules that instead require the initiation to be delayed
or refused in specific circumstances. It is intended that rules K0 through K9
shall remain fixed, whereas policy rules can be exchanged.

3.3 Properties of the CRL Formulation

The logical structure that was defined in the previous subsection allows for a
number of interesting cases. In particular, consider a situation where two sep-
arate actions are pending and become unblocked at the same time, but where
it is not possible to execute them concurrently. With the axioms shown above,
including the policy rule P1, both will be initiated. We take the view that in
this case, one should set things up so that both actions do execute, but at least
one of them will fail, possibly after only one timestep. Although this convention
may seem peculiar at first, please notice that the conflict between two concur-
rent actions may also arise later on during their execution, and it may be due to
external events that could hardly have been predicted when the actions started.
Since we anyway have to accomodate actions that fail for such reasons in the
course of their execution, we can as well represent the starting-time conflict in
the same way.

The representation shown above allows one to express that each occurrence
of an action is done on the request of one or more agents. There must be at least
one agent for which it is being performed, according to axiom K1. If an action a
is pending for more than one agent g and then becomes unblocked at a particular
timepoint s, then the policy axiom P1 requires that the action initiates for all
those agents at the same time. However, if P1 is not used then it is possible to
initiate the action for some of the invoking agents but not for all of them, or to
not initiate it at all.

The rules K0 through K9 characterize the action coordinator in a number of
ways. Rules K1, K2, and K3 specify how the execution of an action, as expressed
using the D() predicate, is controlled by the action states as represented by
acta(g, a). Rules K6 and K7 specify how those action states interact with the
messages from the cognitive agents, as expressed using the inva(g, a) fluents.
Axioms K0, K4, K5, K8 and K9 specify the permitted values and permitted
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transitions for the action states, although the other axioms also imply some
restrictions on those transitions.

We shall show below that the ‘K’ series axiomatization in axioms K0 through
K9 restricts the fluent acta(g, a) to the finite-state automaton that was infor-
mally described in a previous subsection. However, we first prove some other
results since along the way they provide a needed lemma. Notice that the ax-
ioms do not only represent the automaton; they also characterize the use of
multiple invoking agents and the relationship between their invocations.

3.4 Relation to Previous Formulation

We shall now demonstrate that the axioms S1, S2, S3, and S6 that were defined
above follow from the proposed axioms for the action coordinator, including
the policy axiom P1. In doing so we achieve two objectives. First, the action-
based behavior that was described by the ‘S’ series axioms is replaced by a more
finegrained machinery that is arguably a more precise description of how the
deliberative layer works in an intelligent autonomous agent. Secondly, we have
verified that the proposed specification for the new, four-layer architecture with
distributed cognitive capabilities is consistent with the logical architecture that
had been introduced before.

In order to properly relate the old and the new axiomatization, we shall need
an axiom that relates fluents of the form inv(a) to the constructs used in the new
axioms. Since in the ‘S’ series axioms, an action initiates if and only if inv(a)
holds at a timepoint where the action is applicable and not already executing,
we adopt the following axiom:

NS2. H(s, inv(a)) ↔ ∃g[H(θs, acta(g, a) : pend)]

Using this definition as the bridge, we shall show that the axioms S1, S2, S3 and
S6 in the old set of axioms can be obtained as consequences of the new set of ax-
ioms, and in particular axioms K0 through K5 plus K9 and the policy axiom P1.
Notice that P1 is necessary here, since the ‘S’ series axiomatization prescribed
that an invoked action shall start executing as soon as it is not blocked. Axioms
K6 through K8 will not be needed for these proofs, which is not surprising since
they represent the decision machinery for the agent coordinator.

The functions test and fail are outside this consideration, so that axioms S4,
S5, S7, and S8 are not to be treated. Also, axiom S6 is modified by removing
the reference to the test function, becoming

S6’. All actions execute over extended periods of time:
D([s, t], a) → s < t

We notice at once that S6’ is subsumed by the new axiom K1, and proceed with
the others.

The following is the definition for the abbreviation Dv(s, a) that was intro-
duced above, for reference:
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NS3. Dv(s, a)↔
H(s, inv(a)) ∧ (¬H(s, app(a)) ∨ ∃s′∃t′[D([s′, t′], a) ∧ s′ < s < t′])

We begin with a few lemmas.

Lemma 1. D([s, t], a) → H(s, inv(a))

Proof. Assume D([s, t], a). By K1, ∃g[H(s, acta(g, a) : stex)]. By K4, ∃g[H(θs, acta(g, a) :
pend)]. By NS2, H(s, inv(a)). QED.

Lemma 2. D([s, t], a) → ¬Blocked(s, a)

Proof. Assume D([s, t], a)∧Blocked(s, a). By K1 from D([s, t], a), there is some g
such that H(s, acta(g, a) : stex). According to K5 this contradicts Blocked(s, a).
QED.

Lemma 3. ∃g[H(s, acta(g, a) : ex)]↔ ∃s′, t′[D([s′, t′], a) ∧ s′ < s < t′]

Proof. The right to left direction of the implication follows directly from K1.
For the left to right direction, assume H(s, acta(g, a) : ex). It follows from K3
that there are preceding timepoints from s and back where the value of acta(g, a)
is ex, until it arrives to one s′ where the value is stex, so that D([s′, t′], a) for
some t′, according to K2. Such a timepoint s′ must exist according to axiom K9.
According to K1 it must be the case that s′ < t′ and s < t′. QED.

Using Lemma 3 the definition of Dv() can be rewritten as
Dv(s, a)↔ H(s, inv(a)) ∧Blocked(s, a).

We proceed now to the proofs of propositions S1, S2, and S3 which had the
status of axioms in the earlier articles.

Proposition S1. D([s, t], a)→ H(s, inv(a)) ∧ ¬Dv(s, a)

Proof. Lemmas 1 and 2 give D([s, t], a) → H(s, inv(a)) ∧ ¬Blocked(s, a). By
tautology, D([s, t], a) → H(s, inv(a)) ∧ (¬H(s, inv(a)) ∨ ¬Blocked(s, a)) which
is equivalent to proposition S1 using the definition of Dv() as rewritten above.
QED.

Proposition S2. H(s, inv(a))→ ∃t[s ≤ t ∧D([s, t], a)] ∨ Dv(s, a)

Proof. Assume H(s, inv(a)). By the definition of inv, ∃g[H(θs, acta(g, a) : pend)].
Policy axiom P1 gives H(s, acta(g, a) : stex)∨Blocked(s, a), and K2 gives ∃t[D([s, t], a)]∨
Blocked(s, a). Axiom K1 then gives ∃t[D([s, t], a) ∧ s ≤ t] ∨ Blocked(s, a). The
assumption gives ∃t[D([s, t], a) ∧ s ≤ t] ∨ (H(s, inv(a)) ∧ Blocked(s, a)) and the
rewritten definition of Dv() concludes the proof. QED.
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Proposition S3. D([s, t], a) ∧ D([s′, t′], a) ∧ s ≤ s′ < t→ s = s′ ∧ t = t′.

Proof. Assume D([s, t], a)∧D([s′, t′], a)∧s ≤ s′ < t. Furthermore, for the purpose
of proof by contradiction, assume s < s′.
K1 obtains ∃g[H(s′, acta(g, a) : ex)]. ¿From NS1 it follows Blocked(s′, a).
However K1 also implies ∃g′[H(s′, acta(g′, a) : stex)], which according to K5 is a
contradiction. Therefore s = s′.

Next, assume t < t′. ¿From D([s, t], a) and using K1, H(t, acta(g, a) : nil)
follows. ¿From D([s, t′], a) and using K1, it follows H(t, acta(g, a) : ex). According
to K0 this is a contradiction. If t′ < t then the same contradiction is obtained
due to symmetry. It follows that t = t′. QED.

3.5 Finite-State Characterization of Action State

We return now to the finite-state characterization of action state.

Theorem 3. In any model for the axioms specified above, the sequence of values
that are assigned by H() to asta(g, a) for given g and a and for successive s, must
be restricted to the state transitions that are shown in figure 1. It can stay in
the same state for several steps in time, except for state stex where it can only
stay for one step in time.

Proof. Axiom K9 specifies that for initial timepoints the value must be nil. In a
given model satisfying the axioms, and for given g and a there, consider the set of
all intervals [si, ti] such that D([si, ti], a) holds and H(si, asta(g, a) : stex). We have
already proved that these intervals must be disjoint (proposition S3). Within each
of these intervals the transitions in figure 1 are satisfied according to axiom K1.
Furthermore, at the endpoint ti in each of those intervals the value is nil.

Consider now the intervals from the ending time ti of one interval in this set,
to the starting time si+1 of the next interval. The state must be nil at ti and
stex at si+1. According to axiom K4 it must be pend at θsi+1. Consider now the
possible state sequences from nil to pend. Within that interval it can not take
the value stex because in that case axiom K2 contradicts the construction. It can
also not be ex for the same reason, using lemma 3. It is therefore restricted to nil,
ref, and pend, according to axiom K0. A transition from pend to nil would violate
axiom K8. Also, transitions between ref and nil in either direction would violate
axiom K6. The remaining transitions between these three values are allowed by
the diagram.

The timepoints before the first action interval and after the last one satisfy
the same restrictions. This concludes the proof. QED.

4 Additional Facilities in the Action Coordinator

The specification of the action coordinator in the previous section provides a
simple-minded one that just invokes actions as they are requested while respect-
ing a minimal set of restrictions. It can be programmed by the proper choice of
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policy rules and by axioms specifying the applicability fluent app(a). The defi-
nitions for app(a) are of course domain specific. They were not an issue in the
proofs in the previous section since applicability is used in the same way in the
‘S’ series and the ‘K’ series of axioms.

The general notion of an action coordinator strongly suggests that a number
of other facilities can also be included in it, in particular:

– The use of composite actions, where the action coordinator is in charge of
invoking successive sub-actions in a composite action. Plans can be seen as
composite actions.

– The definition of goal-directed behavior, where the action coordinator is able
to represent the relation between a goal and a sequence of actions that is
supposed to lead to that goal. If one of the actions in the sequence fails then
the action coordinator should identify a revised plan and start executing it
instead.

– A more detailed description of the execution of individual actions in the
robot’s physical world, for example by relating the logical description of
actions to their quantitative description using difierential equations.

We have addressed each of these topics in some earlier articles [3,5,6]. It now
seems possible that the concept of an action coordinator can provide a unifying
framework within which these and other aspects of deliberative behavior can be
addressed in a coherent way.
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Abstract. “RoboCup is an international joint project to promote AI,
robotics, and related field. It is an attempt to foster AI and intelligent
robotics research by providing a standard problem where wide range
of technologies can be integrated and examined. RoboCup chose to use
soccer game as a central topic of research, aiming at innovations to be
applied for socially significant problems and industries.”1 The aim of the
paper is to provide an AI research perspective on RoboCup, based on the
experience gained partecipating in the competition, within our research
group at “La Sapienza”.

1 Introduction

RoboCup was launched about ten years ago as a landmark project which identi-
fies “playing soccer” as a standard problem to be faced by research in the fields
of AI and Intelligent Robotics and has the rather challenging long-term goal of
building robots that play soccer as humans.

Since then, RoboCup has been very successful in organizing yearly World
Championships (the RoboCup results have been regularly reported in AI Mag-
azine), with associated scientific Symposia (whose proceedings are published in
the Springer Verlag, Lecture Notes) and several local events, including promo-
tional and educational activities.

The scientific scope of RoboCup spans over the fields of Robotics and Artificial
Intelligence. In this paper, we admittedly regard RoboCup mainly from the
standpoint of Artificial Intelligence.

There are several motivations for getting involved in the design and develop-
ment of a RoboCup team, the most significant ones being the following.

First of all, the RoboCup competition poses interesting scientific problems
and a significant body of research has been accomplished. As an example, a
recent collection of the papers originating from the four legged league played
with the Sony AIBO robotic platforms, shows not only outstanding progress,
but also a significant number of outcomes that are far beyond the scope of the
competition itself.

Secondly, RoboCup is very attractive for students (and very stressful for teach-
ers!), giving them with motivation to work in AI and Intelligent Robotics and
providing them with a significant experience of competitive project work.
1 From the RoboCup Web site www.robocup.org

O. Stock and M. Schaerf (Eds.): Aiello Festschrift, LNAI 4155, pp. 193–211, 2006.
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In this paper, we present a research perspective on RoboCup based on the
experience gained in our laboratory, first building the Azzurra Robot Team,
the Italian national team of robots which participated in the Middle-Size league
of RoboCup-98 and RoboCup-99, then participating in the cited Four Legged
league, starting in RoboCup-00 and finally, in the Rescue Real Robot and Sim-
ulated leagues.

This paper is organized as follows: we first provide some information on
RoboCup, by describing the league structure, and sketching its overall research
goals, activities and results; next, we focus on our own experience by address-
ing some research issues that we have been pursuing in our RoboCup activity.
In particular, we focus on Cognitive Architectures, Vision and Perception, and
Multi-Agent/Robot Systems.

2 RoboCup

RoboCup started its activity by focusing on soccer (football for Europeans). How-
ever, the scope of competitions has been broadening over the years. The new
leagues have introduced new scientific challenges and have promoted the deploy-
ment of results in practical applications (see for example the RoboCup@Home
league). A special league that is not in the scope of the present paper is the Junior
League, which looks at future generations of researchers in Artificial Intelligence
and Robotics.

In this section we first sketch the current RoboCup competitions and then
address the main research challenges that have been pursued within RoboCup,
trying to put them in perspective with the state of the art of research.

2.1 Leagues and Competitions

In the following, we focus on the soccer and rescue RoboCup leagues.

Soccer Leagues. The Simulation soccer league is played by computer programs.
Each team is formed by 11 players, each of which is controlled by a separate
program. The simulation is run by a Soccer Server. Each player has limited
resources both in terms of sensing and in terms of motion capabilities. Commu-
nication among players is allowed and provides the basis for the development of
cooperative play strategies. The simulation league is now evolving towards 3D
simulation of the environment and including a coach competition to address the
strategic aspect of the game.

There are two leagues based on wheeled robots, which pose different con-
straints on the robots. The Small-Size league is played on a ping-pong table by
5 vs. 5 robots, whose size is 15 cm3, approximately. The sensing capabilities rely
mainly on a global vision system, which allows for tracking the robots in the field
in real time, and for implementing both centralized and off-board computation.
The Middle-Size league is played within a 5x9 meter field by 4 players per team
and the body of the robot must be within a cylinder of 50 cm diameter and 80
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cm height. All sensing devices must be onboard the robots, in particular global
vision and other sensing devices not on board the robots are not allowed.

The Four Legged Robot league is played by 4 four-legged SONY AIBO [63].
The 6x4 meter field is equipped with additional color markers. AIBO robots have
on board a color camera and their mechanical structure provides 18 degrees of
freedom. The availability of a standard platform has significantly contributed to
the scientific evaluation of the solutions proposed. Recently, a Humanoid Robot
league started to approach the ultimate goal of RoboCup to build a humanoid
team to play with humans [39]. However, rsearch is still focusing on mechanics
and locomotion.

Rescue Leagues. RoboCup Rescue [41,44] aims at the design of systems for search
and rescue operations after large scale disasters.The goal of the league is to provide
a socially and industrially relevant target to the research carried out in RoboCup.
Moreover, this kind of application brings in scientific challenges related to uncer-
tainty about the environment that are not present in the soccer leagues.

The Rescue Simulation league is concerned with the simulation of complex
urban environments, in a post-earthquake scenario. The simulator provides a
novel view with respect to state-of-the-art tools, since it deals with several types
of events that impact on a disaster scenario: fire propagation, building collapse,
road obstructions, traffic congestion, lack of communication, casualties and vic-
tims. The aim of the competition is to measure the performance of a rescue
operation by several rescue parties programmed by the teams in terms of saved
lives. The agent model to be implemented has the structure of the classical AI
agent. Recently, a new simulation environment modeling robot exploration inside
buildings has been introduced.

The Rescue Robot league aims at the design of robots that search victims
in an unknown environment representing a disaster scenario. The experimental
set-up, called arena, is being developed in close cooperation with USAR2. The
arenas have already been used in various experiments (including RoboCup and
AAAI rescue competitions) and nowadays represent a reference for experimen-
tal evaluation of rescue robots. The current aim of the competition is twofold:
mobility and autonomy. As for the former, the research is focussed on the me-
chanical design in order to overcome the obstacles present in the environment;
the latter is concerned with the design of robots that can autonomously explore
the environment, possibly working in a team, build a map, find the victims and
locate them in the map.

2.2 Research Challenges

The scientific goals of RoboCup have been described in several papers, discussing
general objectives of the RoboCup initiative [40,2,1,52,10], specific research goals
for the different leagues [42,39,41,43,51] and annual reports of the competitions
[53,4,15,59,47,64,3,54,48].

2 Performance Metrics and Test Arenas for Autonomous Mobile Robots. www.isd.
mel.nist.gov/projects/USAR/
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Below, we briefly look at the research challenges from a different perspec-
tive, namely by trying to look at the research topics that have been pursued
in RoboCup spanning over the league structure. Obviously, there is no attempt
to provide complete coverage, but rather to present a very personal view. For a
more comprehensive overview we refer to the RoboCup website.

Control Architectures. As outlined above, robots embody different kinds of sens-
ing and acting devices. The flow of data from the sensors to the actuators is
processed by several different modules and the description of the interaction
among these modules is usually referred to as the architecture.

The design of the architecture is relevant to all the RoboCup leagues. From
the architecture viewpoint the RoboCup teams can be regarded as reactive and
deliberative. We recall that the term “reactive” denotes that the robot reacts
directly to the stimuli coming from the external environment [9], often without
embodying a model of the surrounding world, which, conversely, characterizes
deliberative robots.

While the RoboCup settings require the development of systems that exhibit
both reactive and deliberative capabilities, a reactive behavior can have a very
critical role, and certainly the effectiveness of the hardware significantly impacts
on the robots’ performance. However, some of the techniques for implement-
ing behavior-based control may be difficult to apply, because of the dynam-
ics of the environment. In this respect, both machine learning techniques (e.g.,
[61,7]) as well as novel approaches to behavior engineering have been pursued
(e.g., [11,8]).

On the other hand, the complexity of the task to perform requires a high
level representation of the information acquired from the environment and of
the behaviors of the robots. Therefore, although most of the architectures used
in RoboCup originates from behavior-based robotics, a few approaches have
been proposed that originate from the research in Cognitive Robotics3 (e.g.,
[16,65,13,6,19]).

Vision and Perception. Vision and Perception are obviously central to any robot
design and therefore robot perception is a main research issue in RoboCup.
Soccer games require the robots to perceive the positions of the ball, the other
robots, and the field elements that are used for self-localization, while rescue
robots need to build a map of the unknown environment and locate victims.

In the Small-Size league the centralized vision system can provide fast and
reliable information on the game. On board sensors are used, but their effec-
tiveness is limited due to the size of the robots. In the other soccer leagues,
vision is the main source for acquiring information about the objects in the
field. In the standardized platforms the emphasis is on processing speed for:
colour segmentation, feature extraction, object recognition and tracking. On the
self-constructed robots several settings have been investigated. In particular, in
the Four-Legged league, AIBO robots use a single color camera on a pan-tilt
3 The term “Cognitive Robotics” was first introduced by the research group at the

University of Toronto led by Ray Reiter [46].
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“neck” that allows for quick change of view points during the games; in the
Middle-size, the common choice is the use of omni-directional cameras using
mirrors of different shapes that allow for a 360 degree field of view [50] and thus
for higher reactivity in the game. The real time constraints of image processing
can be successfully met both with specialized hardware and with processing on
conventional machines. Anyways, the amount of information that is extracted
from the images can be very different and context dependent special processing
is sometimes performed.

Moreover, several kinds of sensors have been used to increase the performance
in object recognition, and other tasks related to perception. In particular, the
use of laser range finders combined with inter-robot communication has been
shown extremely effective for tracking opponents and teammates [27,28].

The main research issues that have been addressed in the soccer leagues
are mostly related to real-time object recognition and tracking (e.g., [45]), self-
localization (e.g., [29,35,56,49]), and vision-based navigation (see Section 4 for
details). Interesting approaches to multi-robot cooperative perception have also
been considered [18].

In contrast to soccer, in the rescue scenario different sensors are used on the
robots: cameras are still used to examine the scene, but due to the difficulty
in interpreting general scenes in this environment, images are also transmitted
remotely to a human operator who examines them.

To create the map of the environment, laser range finders are a common
choice. In some cases these sensors are mounted on a moving device enabling
3D scanning and, consequently, producing 3D maps of the environment [30].
Finally, thermic sensors are used to find heat sources that can be generated by
the victims.

In the rescue scenario, object recognition becomes much more difficult due to
the uncertainty and lack of structure of the environment. Specifically, the task
of victim detection should address a number of issues that arise in this scenario,
such as differences in size, shape, posture, color of skin, degrees of freedom of
the human body, occlusions [24].

Moreover, the use of different kind of sensors (sonars, bumpers, infrared, ther-
mic and vision sensors) either for object recognition or for other purposes (i.e.,
navigation) raises the problem of sensor fusion.

One specific aspect of perception is related to localization: we recall that lo-
calization amounts to knowing the robot’s pose (position and orientation) in the
environment [60]. This is a crucial feature for autonomous robots performing
complex tasks over long periods of time and it is thus a main requirement for
mobile robots involved in the soccer leagues. Due to the structure of the en-
vironment, both vision and laser range finders can be used, the former being
more accurate, but requiring additional on board equipment and processing and
several techniques have been experimented and compared [25,26,49].

Localization is combined with map construction in the autonomous robots de-
signed for the rescue league, thus leading to the Simultaneous Localization and
Mapping (SLAM) problem [60]. The features of the rescue environment make
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it challenging for state-of-the-art approaches, both in terms of real time perfor-
mance and robustness. Moreover, the extentions to 3D mapping have recently
been addressed to improve the quality of the rescue mission result.

Multi-agent systems. Coordination of robotic agents with distributed control
is considered one of the central research issues in RoboCup competitions. In
a highly dynamic and uncertain environment, such as the one provided by
RoboCup games, the centralized coordination of activities does not seem to
be adequate. In particular, the possible communication failures as well as the
difficulty of constructing a global reliable view of the environment require full
autonomy on each robot.

Coordination in multi-agent systems and team work in the context of Robo-
Cup have a central role in simulation leagues, because of the high number of
players. In particular, the rescue simulation league provides an ideal testbed for
the work on large scale team coordination. Clearly, the presence of the opponents
introduces substantial differences in the approaches to coordination.

In the soccer leagues (except for the Small-Size), all the sensors are on board
the robots, thus distributed approaches to coordination are preferred since they
offer increased robustness with respect to centralized ones. Moreover, coordina-
tion among the players is a critical issue for the performance of the team [66,36],
because the dynamics of the game make it necessary to avoid interferences among
players’ actions and because of the difficulty of reconstructing global information
about the environment.

Teams of robots can also be deployed in the rescue robot league. In this
setting, the search can be greatly improved by using multiple robots. However,
deploying a team of robots requires a robust autonomous behavior. In RoboCup
rescue, all the basic aspects of cooperation within a team of robots are relevant
and this makes it quite challenging from a research perspective.

RoboCup really has a large impact on the research in multi-agent, and, in par-
ticular, on multi-robot systems. In fact, the competitions provide very challeng-
ing scenarios for the experimentation and all the main technical issues arising in
designing within cooperative teams, namely: cooperative perception, cooperative
localization, task assignment, action synchronization and distributed planning,
have been addressed by RoboCup related research.

Learning. Learning approaches are being applied to many problems arising in
all the leagues of RoboCup using several techniques: genetic programming, re-
inforcement learning, and neural networks.

In the robot soccer leagues, learning process must face the challenges of the
experiments with real robots, and is thus more suited to the learning of basic
skills (e.g., [23,55,57,67]), but also of cooperative behaviors (e.g., [61]). In the
simulation leagues experiments on learning strategies, behaviors and adaptation
to the opponents’ model have been performed (e.g., [7]). Moreover, complex
forms of learning can also be combined in a layered learning approach [58],
according to a task decomposition structure.
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It turns out that learning and adaptation of basic skills, such as walking (e.g.,
[55]), and vision calibration (e.g., [57]), have shown to be much more effective
than parameter tuning by hand.

Moreover, rather interesting experiments have been performed in learning
collaborative behaviors, in order to achieve coordination without communication
that is also viewed as implicit communication. See [62] for a survey of learning
in multi robot systems and RoboCup, specifically.

Fig. 1. Soccer and Rescue Robots in action. In the upper left, robots of the Azzurra
Robot Team in the Middle-Size league; in the lower left, AIBO soccer robots of the
SPQR team in the Four-Legged League; on the right, our robot used in RoboCup
Rescue competitions.

In the next sections we look more closely at the issues that we have di-
rectly addressed in our experience in RoboCup, within the research group at
“La Sapienza” (Figure 1 shows our teams of robots during RoboCup competi-
tions). In particular, here we shall address our contributions according to the
structure above, except for learning, which is, to us, left for future research.

3 Cognitive Architectures

In this section we address our proposals to apply a cognitive robotics approach
to the design of soccer players and rescue robots.
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Cognitive Robotics aims at designing and realizing actual agents (in particular
mobile robots) that are able to accomplish complex tasks in real, and hence
dynamic, unpredictable and incompletely known environments without human
assistance. For this purpose, they can be controlled at a high level by providing
them with a description of the world and expressing the tasks to be performed in
the form of goals to be achieved. However, in RoboCup, due to the difficulty of
acquiring information from the environment, instead of using complex strategical
reasoning, the cognitive approach has been useful as a metaphor for clean design
and quick development.

The implementation of a CognitiveRobotics approach requires addressing a for-
mal framework for representation and reasoning about actions and the system or-
ganization. This enables the execution of complex actions while retaining the abil-
ity to quickly react to the changes of the environment, namely the architecture.

Let us first briefly address the architecture of our robots, a heterogeneous
layered hybrid architecture [34], with two levels: the deliberative (cognitive) level,
in which a high-level state of the agent is maintained and decisions on which
actions are to be performed are taken, and the operative (reactive) level, in which
low-level conditions on the world are verified and actions are actually executed.
To provide an effective integration of reasoning and reactivity, we adopt an
asynchronous execution model. The actions in the operative level are expressed
as control programs. Such programs are generated by the planner (possibly off-
line) and turned into sequences of actions, or, more generally, into execution
structures (including behaviors and low level control actions).

Our formal framework [17] originates from Propositional Dynamic Logics and
exploits their formal correspondence with Description Logics. In [37] an extension
of such a framework is presented including both concurrency on primitive actions
and autoepistemic operators for explicitly representing the robot’s epistemic
state. The resulting formal setting allows for the representation of actions with
context-dependent effects, sensing actions, and concurrent actions, and properly
addresses both the presence of exogenous events and the characterization of the
notion of an executable plan in such a complex setting.

The proposed framework has been implemented in a system which is capa-
ble of generating plans that are actually been used to describe the knowledge
of robotic soccer players. In the implementation, the output of the planner is
used to generate control programs, that can be directly executed on the mobile
base. Specifically, we have been able to formalize at the logical level several sit-
uations arising in the RoboCup scenario and to generate, through the planner,
a significant portion of the control programs that were executed on our soccer
players.

Recently, the approach has been extended to deal with non-determistic ac-
tions and actions with probabilistic effects [32]. A probabilistic representation
raises, at the symbolic level, some of the uncertainty that must be faced in
the RoboCup environments. Consequently, quantitative information to choose
the possible courses of action becomes available at planning time, allowing an
improvement in the agents’ performance.
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Although the above mentioned planning formalism is quite expressive, pro-
gramming high level behaviors for complex mobile robots performing complex
tasks requires a more powerful description language. For example, in program-
ming soccer behaviors for AIBO robots, additional features need to be consid-
ered: action interruption due to changes in the environment, parallel execution
of complex behaviors (sub-plans).

To address these new requirements we have devised a planning language based
on Petri Nets [68] that allows for specifying complex constructs of actions, such
as ordinary actions, sensing actions, conditional structures, loops, interrupts,
and concurrent execution of plans.

For this formalism we have implemented a plan executor that controls the
evolution of the plan according to the internal state of the robot, as well as a
set of graphical tools for easily drawing, verifying and debugging plans.

4 Robot Perception

In this section we sketch our contributions in robot perception applied in RoboCup
competitions. In particular, we describe methods for color segmentation and ob-
ject recognition that are in use in our Four-Legged League, methods for localiza-
tion and mapping that are in use in both the soccer and the rescue teams, and
human body detection through stereo vision that has been implemented on our
rescue robot.

4.1 Color Segmentation and Object Recognition

RoboCup soccer is a color-coded environment, where colors are used to define
principal objects needed by the robots to perform their tasks. Consequently, color
segmentation is typically the first step of the vision system of a robot playing
RoboCup soccer. Since good color segmentation allows for easy implementation
of object recognition and localization, most of the robot vision systems are based
on fast and accurate implementation of such process.

Many approaches for on-line color segmentation have been proposed in the
RoboCup community. However, some of these approaches can be implemented
in real-time only on robots with adequate computational resources (e.g., Middle-
size robots). In the Four-Legged League, AIBO robots have very limited compu-
tational power (576 MHz CPU) and a low quality low resolution image acquisi-
tion device; moreover, real-time implementation of the vision process is extremely
important for a correct execution of behaviors. An effective implementation of
on-line color segmentation on AIBO robots has been reported in [38].

The method developed within our team [31] is an on-line segmentation method
that dynamically computes a transformation of the color distribution of the
image. The approach has been actually implemented in such a way to obtain
real-time performance on AIBOs, by performing dynamic computation only pe-
riodically. Moreover, it can be used for off-line generation of color tables that
can be manually refined, speeding up the manual calibration process.
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Fig. 2. Dynamic Color Segmentation

Figure 2 shows an example of segmentation. The method is mainly based on
fast analysis of a mono dimensional color space: the H component of the HSV
color space. By analyzing color distribution of the current image, we are able to
compute a transformation function that transforms such distribution in another
distribution. The resulting distribution provides for efficient color segmentation
based on static thresholds, but being computed according to the current image
is also very robust to illumination changes.

During RoboCup 2005, we have tested the method not only during the variable
lighting challenge, but also in some games (test matches). We set parameters the
first day and never changed them during the competition. The method has been
evaluated also on a large data set and with a novel evaluation mechanism [31].
Such evaluation shows that the method achieves performance that are compa-
rable with those obtained by manual calibration, being at the same time robust
to illumination changes.

4.2 Localization and Mapping

In all the RoboCup leagues (except for the Small-Size League), localization is a
critical problem, since global positioning sensors are not allowed. This is espe-
cially true for those approaches that attempt to build an explicit model of the
state of the robot (i.e., excluding the purely reactive ones). The Middle-size and
Four-Legged RoboCup environments assume the following characteristics that
must be considered for the choice of localization methods: (i) the geometry of
the lines drawn on the field are known, (ii) the environment is highly dynamic
(there are many robots and the ball i moving in the field); (iii) the task must be
performed continuously for a “long” time (the length of each period is 10 min-
utes); (iv) the environment cannot be modified; (v) crashes among robots are
possible. In addition, for the Four-Legged league it is necessary to consider that
the only sensor available is a low quality camera, that odometry is very poor,
and that robots have limited computational power. All these factors determine
a difficult scenario for localization methods.

Self-localization is a well known and well studied problem in robotics. Prob-
abilistic approaches (see [60]) have been successfully used in many applica-
tion fields (and also in RoboCup) and comparisons among different methods
[25,26,49] have been performed in order to evaluate the characteristics and the
performance of the different methods.
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For robots in the Middle-Size League we proposed a localization method [33],
that is based on matching a geometric reference map with a representation of
range information acquired by the robot’s sensors. The method exploits the
properties of the Hough Transform for recognizing lines from a set of points, as
well as for calculating the displacement between the estimated and the actual
pose of the robot. The Hough Transform enables for a representation of lines
that makes the matching process computationally fast and robust to noise.

In the Four Legged League, we have experimented a different approach, based
on particle filters [49], that results in better performance in a setting where robots
have very poor perception abilities.

Fig. 3. Map

An extension of localization based on the Hough Transform has been used
for scan matching and mapping [14], without the assumption of polygonal envi-
ronments. This method has been experimented also on our rescue robot [5] for
the implementation of a scan matching process that is used within the mapping
module. Figure 3 shows the output of a rescue mission of our robot at RoboCup
2004, the map, the victims found and the robot trajectory are the results of
partial autonomous exploration and victim detection [12].

4.3 Human Body Detection

Human body detection is a central problem in the rescue league, where the
objective is to find victims and place their position on a map. The characteristics
of the rescue scenario make this task even more difficult than the general one of
detecting the presence of people in an environment. In fact, besides the general
difficulties of this process, such as the high degree of freedom of a human body,
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self occlusions, appearance variation due to clothing, shape variations due to the
different gender, race and age, in search and rescue missions it is necessary also
to consider additional problems due to lighting variations and to the fact that
it is not always possible to achieve the position of the best viewpoint.

Our method for human body detection [24] makes use of a stereo vision camera
and exploits 3D range information in order to compute 3D measures for human
body limbs and match them against a human body model. The method works
reasonably well even in situations of severe occlusions (that are very common
in a rescue scenario); however, it requires the subject to be quite close to the
camera.

Given a stereo pair of images, the left image is processed with an edge detec-
tion module and then with contour extraction. These steps provide a segmenta-
tion of the image based on closed contours. The stereo pair is also processed by
a stereo algorithm to compute the disparity and 3D information about the seg-
ments identified before. The body part classifier takes these segments and uses
a similarity measure to detect body limbs, that are finally used for matching a
human body model.

The method uses an iterative algorithm that performs split and merge oper-
ations between the detected segments and uses human body models at different
levels in order to find the best association [24]. A goodness function is used to
match found segments and human body parts. If such a goodness is above a pre-
defined threshold, then the hypothesis is accepted and the presence of a human
figure in the image is declared, otherwise a new iteration is attempted merg-
ing/splitting detected segments. The process terminates with the result that a
human figure is not present in the image when, after a limited number of itera-
tions, none of the segments has a sufficient score for a human body limb, so the
final score of the goodness function is low.

Fig. 4. Example of victim detection in a rescue scenario

Figure 4 shows an example of such a process including the left image of the stereo
pair, the segmented image with closed contours and the similarity measures.

5 Multi-robot Coordination

Multi-Robot Coordination is a fundamental aspect for an effective realization of
teams of intelligent systems, therefore it is a central research issue in RoboCup.
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This section describes two approaches to multi-robot coordination: the first re-
lated to the soccer task, the second concerning large scale multi agent systems
and in general situations where limited communication bandwidth is available.

5.1 Coordination of Heterogeneous Soccer Robots

Wehave alreadypointed out that the idea of the soccer leagues is that robots are au-
tonomous, since each robot acquires the information about the game only through
on-board devices. While a centralized approach is possible, in most cases robot
control is fully distributed. In fact, a distributed approach provides for increased
robustness to unavoidable measurement errors, sensor noise, network failures, and
other possible malfunctioning of one element in the system. Moreover, due to the
difficulties of reconstructing precise and reliable information about the environ-
ment (with the exception of [27]), coordination needs to be achieved without mak-
ing strong assumptions on the knowledge of the single players, but typically relying
on explicit communication to exchange information among the players.

In addition, team members may differ both in the hardware and in the soft-
ware. Consequently, coordination requires not only a distributed coordination
protocol, but also a very flexible one that allows to accommodate the various
configurations that can arise by forming teams with different basic features.

Besides the above constraints, coordination should deal both with roles (de-
fender, attacker etc.) and with strategy (defensive, offensive). While the strategic
level is currently demanded to an external selection (the human coach), roles are
dynamically assigned (see [58]) to the various team elements during the game,
depending on the configuration present on the field.

In this scenario we have developed a distributed coordination method that
has been successfully employed by all the members of the ART team during the
1999 RoboCup competition [36] and then on the SPQR Legged team. The ART
team was formed by players that have been developed by 6 research groups,
operating in various Italian universities. Therefore, it ART can be considered
a multiagent robotic system that is heterogeneous both from the hardware and
from the software viewpoint, thus making coordination rather challenging. The
effectiveness of the proposed method has been proved by the fact that we were
always ready to substitute any robot with another one, without endangering the
coordinate behavior of the overall team.

From a technical viewpoint, the proposed protocol is based on the explicit
exchange of data about the status of the environment and is based on simple
forms of negotiations. Simplicity in the protocol stems from the need to make
rather weak assumptions on each robot’s capabilities. An increase of such capa-
bilities would lead to more complex protocols. However, we believe that a major
issue in coordination is to find a suitable balance between the robot’s individual
capabilities and the form of cooperation realized.

5.2 A Token Passing Approach for Dynamic Task Assignment

Coordination protocols using broadcast messages among the agents to share util-
ity values at every cycle (as the one discussed in the previous section) is effective
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Fig. 5. Rescue simulation agents

in very dynamic domains, but does not scale well with the size of the team,
since it requires a large network bandwidth. In many applications (and also in
the RoboCup rescue simulation and real robots), communication bandwidth is
limited and coordination approaches relying too much on communication may
easily decrease their performance due to network latency of temporary failures.
Moreover, rescue simulation involves a higher number of agents to be controlled
(than soccer robot leagues) and tasks have additional constraints on the execu-
tion that are usually not present in the soccer environment (e.g., deploying too
many firemen for extinguishing a fire in a building is not effective).

To address these problems, we have devised a coordinationmethod that requires
very low communication bandwidth, is able to guarantee a dynamic conflict-free
task allocation, and to deal with constraints on task execution, while maintaining
performance that is comparable to approaches using broadcast communication at
every cycle. In particular, we have considered a scenario in which: i) tasks are not
known beforehand, they have to be discovered during mission execution; ii) each
task may require exactly n agents in order to be performed; iii) once agents are
allocated to a particular task they must synchronize their actions.

The basic idea of our approach [20,21] is based on a Token Passing technique
in which tokens are used to represent tasks that must be executed by the agents,
and each team member creates, executes and propagates these tokens based
on its knowledge of the environment. Tokens are not statically predefined, but
generated on-line during mission execution as a result of agent perceptions. An
asynchronous distributed algorithm is used to detect and solve conflicts due to
simultaneous or erroneous task perception by several agents. Our approach guar-
antees a conflict free allocation of exactly n agents for each task. Moreover, this
new coordination method significantly reduces network usage for coordination
thus scaling better with the number of agents in the team.
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Experiments have been performed with simulated agents in the RoboCup
Rescue simulation environment [20]. Figure 5 shows agents in a map representing
the city of Foligno, that has been developed within our project and used in the
RoboCup 2003 competition. In particular, in our experiments we have evaluated
different strategies for the firemen engaged with fire extinguishing tasks, showing
that the assignment of exactly n agents to each task (i.e., to each firing building)
effectively improves the performance of the team. Moreover, the use of token
passing guarantees a low communication bandwidth. This makes it thus suitable
to work in the RoboCup Rescue simulator, which embodies many limitations on
communication between agents, simulating communication problems that are
often present in rescue scenarios.

The token passing approach has also been used with AIBO robots in a cooper-
ative foraging task [22]. The robots have to collect several objects scattered in the
environment. The collection of each object requires that exactly two robots help
each other to grab it (a helper robot and a collector robot). After the grabbing
phase, only one robot is needed to transport the object. Object number and posi-
tion in the environment is not known, and objects are identical in color and shape,
therefore they can only be distinguished by their position in the environment.

6 Conclusion

In this paper we have addressed research in Artificial Intelligence carried out
within the RoboCup initiative, focussing in particular on the work of the group at
“La Sapienza”. We have discussed some of the challenges and addressed some of
the research results. Overall, we believe that the paper shows that the RoboCup
framework is well suited for developing interesting research work in Artificial
Intelligence and it will be even more so in the future.

We conclude the paper with a few additional considerations on the RoboCup
initiative that are not directly specific to the research achievements, but are
related to a broader view of the research development.

Over the years, the RoboCup activity has involved a large number of students.
They have been a major resource of the project and the main investments have
been dedicated to them, through schools, through several preparation meetings
where the technical solutions developed were presented and carefully evaluated,
and, finally, through the participation in the competitions held in a scientifically
qualified international environment. In addition to conventional lectures, such
activities allowed the students to interact with colleagues and teachers of other
academic institutions and discuss their own ideas in a very stimulating and
competitive framework. The overall training experience for the students has
no counterpart in the Italian university curricula. While RoboCup may not be
viewed as a self-contained research framework, its value in the recruitment of
new young and enthusiastic researchers is extremely valuable.

The costs of developing and maintaining RoboCup teams are not negligible as
compared to the funding that Universities and other agencies can provide for this
kind of education and research activities. This drove us to enter the rescue com-
petion to be able to combine the competition with application projects. Here is
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a tradeoff between application oriented and basic research. While basic research
plays a fundamental role, it is more difficult to obtain funding. However, we hope
that appreciation of the RoboCup initiative, which combines, very attractively
education with the development of basic research in Artificial Intelligence, can
bring new resources and new funding to the field.

After about ten years of RoboCup, it is worth considering how the initiative
will proceed in the remaining 44 years to the ultimate goal of humanoid soccer
players in 2050. This year is also the sixthieth birthday of Artificial Intelligence,
and we can realize how difficult it was to foresee the achievements of today’s AI 40
years ago. We simply conclude by wishing that in the next 40 years the research
stream of AI that has been developed through RoboCup, steadily continues to
advance our knowledge and achievements in the field.
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Abstract. Several application domains require planning techniques that
model uncertainty in the results of both actions and observations. Ac-
tions may have different effects that cannot be predicted at planning
time. Observations may result into uncertainty about the current state
of the world. In this paper, we first discuss the problem of planning
with uncertainty in action execution and observations. We then discuss
how this problem can be relevant to different application domains that
represent rather different characteristics, like planning for controlling a
robot that has to perform a surveillance task, as well as planning for the
automated composition of web services for e-commerce.

1 Introduction

Planning is concerned with choosing and organizing actions for changing the
state of a dynamic system. A planning domain is a conceptual and abstract model
for describing the system that can evolve by executing actions. For instance, a
planning domain can model the fact that a robot can transport objects from one
room to another one, thus changing the objects’ positions. A railway interlocking
system can issue commands that change the state of switches, rail-road crossings
and signals to trains. A web service for on-line payments can activate a money
transaction thus changing the state of the bank account.

Two key elements of a planning domain are actions and observations. Actions
make the system change its state. Observations acquire information about the
current state of the system. Two common sources of uncertainty are the results
of actions and observations:

– Uncertainty about Actions: An action may have different effects, and it
is impossible for the planner to predict at planning time which effect will
actually take place at execution time. The uncertainty is about which is the
actual state after an action has been executed.

– Uncertainty about Observations: In some situations the state of the
world cannot be completely observed, and thus cannot be uniquely deter-
mined. An observation at execution time can result is a set of states. The
uncertainty is about the current state of the world.

In this paper, we first discuss the state of the art in planning under uncertainty
(Section 2). We then describe a general teoretical framework for planning with
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uncertainty in actions and observations (Section 3). We consider two examples of
problems with rather different characteristics: planning for a robot’s surveillance
tasks (Section 4), and planning for the automated composition of a purchase and
deliver web service (Section 5). In these two sections, we discuss how planning
under action and observation uncertainty is relevant in both cases.

2 State of the Art and Related Work

Within the automated planning community, it is widely recognized that several
application domains need modeling and reasoning tools different from classi-
cal planning. Classical planning relies indeed on several restrictive assumptions.
Among them, three main assumptions are not realistic for several application
domains. First, the hypothesis that actions have deterministic effects, i.e., that
each action applicable in a state leads to a single new state. Second, the as-
sumption of full observability, i.e., the fact that plan execution has complete
knowledge about the current state of the system and observations determine the
state univocally. Finally, the restriction that goals are sets of states, i.e., the
objective is to build a plan that leads to one of the goal states.

One of the first approaches to automated planning that has relaxed these
assumption is planning based on Markov Decision Processes (MDP) (see [12]
for an extensive survey). MDP is essentially planning over stochastic domains,
i.e., non deterministic domains that allow for actions with multiple effects and
where probabilities can be assigned to transitions. The MDP framework is rather
expressive. It allows for representing and dealing with information about costs
and probabilities of action transitions and with rewards associated to states. In
MDP, algorithms that optimize a utility function are defined on the basis of
costs/rewards.

In this paper we propose a framework that does not deal with probabili-
ties, costs, rewards, and utility functions. We are convinced that, while in some
applications statistical information about probabilities can be collected with ex-
periments and historical data, there is a rather large set of domains where uncer-
tainty has nothing to do with probabilities. This is the case of the two examples
and application domains that are discussed in the following sections, and, from
our experience, of several applications in different sectors, e.g., safety critical
systems, industrial controllers, e-government, e-banking and e-business.

Indeed, the MDP approach provides the ability to find solutions that have
detailed requirements on costs and rewards. However, in some applications, it
is rather important that the plan guarantees some requirements, rather than
optimizes a given utility. Moreover, from the practical point of view, probabilities
are rather difficult to be managed in the case of large state spaces. Probabilities
do not allow to represent uncertainty as a set of states, and to deal with them
in an effective and efficient way.

The problem of planning in nondeterministic domains and under partial ob-
servability has also been addressed with approaches different from MDP and
probabilistic planning. One of the early attempts is described in [19], which
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presents an off-line planning algorithm based on a breadth-first search on an
and-or graph. Other initial attempts have extended classical planning to the
problem of planning in nondeterministic domains (see e.g., [28,31]). More recent
approaches extend planners based of planning graphs and satisfiability . Most of
them are limited either to full observability, or to conformant planning. Among
those that can deal with partial observability, the first significant result was SGP
[35], an extension of GRAPHPLAN, which provides significant improvements in
performances compared with previous extensions to classical planners. SGP pro-
duces acyclic conditional plans, but it is unable to deal with nondeterministic
action effects, i.e. uncertainty is limited to the initial condition, which is a set of
states rather than a single state.

Among the planners based on satisfiability, QBFPLAN [32] can deal with
uncertainty in action execution and partial observability. The planning problem
is reduced to a QBF satisfiability problem, that is then given in input to an
efficient solver [33]. As all planners based on satisfiability, QBFPLAN is limited
to bounded-length planning, i.e. it looks for a solution of specified length l.
When this does not exist, it iteratively increases l until a solution is found or a
specified limit is reached. QBFPLAN is thus unable to detect when the problem
is unsolvable. QBFPLAN exploits its symbolic approach to avoid exponential
blow up caused by the enumeration of states, but it can hardly scale up to large
problems.

A different approach to the problem of planning under partial observability is
the idea of “Planning at the Knowledge Level”, implemented in the PKS planner
[29], This approach is based on a representation of incomplete knowledge and
sensing at a higher level of abstraction than that provided by ground modeling.
While this can effectively reduce the complexity of the problem, it makes it
impossible to model a variety of problems that can only be dealt with world-
level reasoning.

Planning via symbolic model checking has been devised to deal with the spe-
cial case of full observability (both with reachability goals [13] and with extended
goals [30,27]) and with the special case of conformant planning. Planning for
reachability goals under partial observability via symbolic model checking has
been addressed in [7]. The more general problem of dealing with partial observ-
ability and temporal goals is addressed in a preliminary extension [5,10], which
however does not exploit any symbolic machinery.

Other planners that are based on symbolic model checking techniques restrict
to the case of full observability, see, e.g., UMOP [23,24], or to classical planning,
see, e.g., MIPS [16]. Other approaches are based on different model checking
techniques, e.g., on explicit-state representations, and most of them are also
limited to the case of full observability. This is the case of SIMPLAN [25]. [15]
presents an automata based approach to formalize planning in deterministic
domains. The work in [20,22,21] presents a method where model checking with
timed automata is used to verify that generated plans meet timing constraints.

In our approach, we deal with uncertainty at planning time. Methods that
interleave planning and execution (see, e.g., [26,9,3]) can be considered alterna-
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tive (and orthogonal) approaches to the problem of planning off-line with large
state spaces. On one side, they open up the possibility to deal with larger state
spaces. On the other side, these methods cannot guarantee to find a solution,
unless assumptions are made about the domain.

3 Planning Under Action and Observation Uncertainty

We model a dynamic system as a planning domain D that is defined in terms of
a set states S of the system that is modeled, some of which are the initial states
I ⊆ S of the system, a set of actions A that can change the state of the system,
and a set of observations O that can result by observing the system. Given
these basics elements of a planning domain, we model uncertainty in actions and
observations by means of a transition function that describes how (the execution
of) an action leads from one state to possibly many different states, and by means
of an observation function that describes which observations are associated to
the actual state of the domain:

– Transition Function:R : S×A → 2S . The transition functionR associates
to each current state s ∈ S and to each action a ∈ A the set R(s, a) ⊆ S
of next states. We say that action a is executable in state s if R(s, a) �= ∅.
We require that in each state s ∈ S there is some executable action, that
is some a ∈ A such that R(s, a) �= ∅. The transition function allows us to
model uncertainty in action execution since an action may lead to different
states.

– Observation Function: Obs : S → 2O. The observation function Obs
associates to each state s the set of possible observations Obs(s) ⊆ O. We
require that some observation is associated to each state s ∈ S, that is,
Obs(s) �= ∅. The observation associated to a given state is not unique. This
allows us to model noisy sensing and lack of information, since different states
may be indistinguishable.

In this paper we focus on finite state planning domains; we say that D is finite
state if sets S, A, and O are finite.

Given a planning domain and a goal, the result of the planning activity is a
plan that organizes actions in order to achieve the goal. Actions can be organized
in different ways. For instance, moving a robot to a given room and then to the
corridor is an example of a sequential plan; executing an instruction depending
on the result of the execution of a previous one is an example of a conditional
plan; requesting a reservation to a web service for booking hotels until some
requirements on room quality and price are satisfied, is an example of an iterative
plan.

As a consequence of modeling uncertainty in actions and observations, we
have to model plans that go beyond the simple sequential plans proposed by
classical planning models, see, e.g., [18,36,38,37]. Even the case of plans that
determine the next action depending on the current state of the system are not
enough. Indeed, we may need to execute different actions in the same state, e.g.,
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depending on the states that have been previously visited, or the actions that
have been previously executed. For instance, a robot performing a surveillance
task, may take different directions in the same room depending on which other
rooms have been previously visited.

In general, a plan should identify the action to be performed depending on
the previous states of the system and the previous actions. Moreover, since we
have uncertainty in observations, the action to be executed should depend on
the past observations, and not on the past states, since some states may be
indistinguishable.

A plan can be therefore described as something that starts with an initial
observation, say o0, which provides the information to determine the action to
be executed, say a1, which leads to a new observation o1. Given o0 and o1, the
plan decides for action a2 to be executed, and so on. A plan can be therefore
defined as a partial function that, given a sequence of observations, returns an
action.

In order to define when a plan satisfies a goal, we need to give “semantics” to
execution of plans in planning domains. Uncertainty in action execution as well
as uncertainty in observations lead to plan executions that cannot be limited to
sequences of states (as it is usually done in planning without uncertainty). Infor-
mally, uncertainty leaves to multiple possibilities, i.e., to branching to different
states. As a consequence, the execution of a plan can be described as a tree,
rather than a sequence. The branching in the tree corresponds to the different
states resulting from the execution of an action as well as to the different states
resulting from an observation.

Formally, following [14], executions can be defined as labeled execution trees,
i.e., trees with nodes labeled with states and observations. A planning problem
can thus be formalized as a planning domain that induces a labeled execution
tree and a goal that is a set of labeled execution trees, thus identifying the
desired behavior. A solution to a planning problem is a plan such that its labeled
execution tree is one of the (or satisfies) the labeled execution trees represented
by the goal.

For an extensive discussion of how this framework can be instantiated to
planning for reachability gaols under full observability, to planning for tempo-
rally extended goals, and to conformant planning, i.e., to planning under null
observability, see [14].

4 Planning for Robot’s Surveillance Tasks

In this section, we consider a simple example where a robot has to accomplish
a surveillance task by keeping visiting different rooms of a building (see figure
1). The building of five rooms, namely a store, a department dep, a laboratory
lab, an office, and a corridor corr. The robot can move between the rooms. The
laboratory is a dangerous room it is not possible to exit from. Between rooms
office and dep, there is a door that the robot cannot control. Therefore, an east
action from room office successfully leads to room dep only if the door is open.
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dep

labstore

office

corr

Fig. 1. A simple example of a surveillance task

This is a first source of uncertainty about action execution. Another source of
uncertainty occurs when the robot tries to move east from the store: in this case,
the robot may end either in room corr or in room lab. The planning domain is
depicted in figure 2.

For this example, for simplicity, we assume that we do not have uncertainty
in observation. Under this assumption, plans can use states rather than obser-
vations, and a plan can be defined as a function from sequences of states to
actions to be executed, i.e., a plan is a partial function π : S+ ⇀ A. Notice that
these kinds of plans can be represented finitely, in terms of a function that given
a state and a “context”, specify the action to be executed, and in terms of a
function that, depending on the action outcome, specifies the next context [30].

An example of this kind of plan is shown in Figure 3. The plan leads the robot
from room store to room dep going through the office, and then back to the store,
again going through the office. Two contexts are used, namely c0 when the robot
is going to the dep and c1 when the robot is going back to the store. This allows
the plan to execute different actions in state office and in state store.

The execution of a plan can be described as a labeled tree as shown in the
previous section. In the case of no uncertainty in observation the plan execution
can be described as a S-labeled tree τ such that:

– s0 ∈ τ , where s0 ∈ I ;
– if s0s1 · · · sn ∈ τ , π(s0s1 · · · sn) = an, sn+1 ∈ R(sn, an),

then s0s1 · · · snsn+1 ∈ τ .

We can describe goals for a surveillance task by means of formulas in a tempo-
ral logic. In this setting, we use Computation Tree Logic (CTL) [17] that enables
us to characterize the corresponding set of trees. A CTL goal is defined by the
following grammar, where s is a state of the domain D:

g ::= p | g ∧ g | g ∨ g | AX g | EX g

A(g U g) | E(g U g) | A(g W g) | E(g W g)
p ::= s | ¬p | p ∧ p
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Fig. 2. The planning domain for the surveillance task

STATE CONTEXT NEXT ACTION STATE CONTEXT NEXT STATE NEXT CONTEXT
store c0 south store c0 office c0

office c0 east office c0 dep) c1

office c0 office c0

dep c1 west dep c1 office c1

office c1 north office c1 store c1

store c1 wait store c1 store c1

Fig. 3. An example of plan

CTL combines temporal operators and path quantifiers. “X”, “U”, and “W” are
the “next time”, “(strong) until”, and “weak until” temporal operators, respec-
tively. “A” and “E” are the universal and existential path quantifiers, where a
path is an infinite sequence of states. They allow us to specify requirements that
take into account uncertainty in action execution. Intuitively, the formula AX g
means that g holds in every immediate successor of the current state, while the
formula EX g means that g holds in some immediate successor. The formula
A(g1 U g2) means that for every path there exists an initial prefix of the path
such that g2 holds in the last state of the prefix and g1 holds in all the other
states along the prefix. The formula E(g1 U g2) expresses the same condition, but
only on some of the paths. The formulas A(g1 W g2) and E(g1 W g2) are similar
to A(g1 U g2) and E(g1 U g2), but allow for paths where g1 holds in all the states
and g2 never holds. Formulas AF g and EF g (where the temporal operator “F”
stands for “future” or “eventually”) are abbreviations of A("U g) and E("U g),
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respectively. AG g and EG g (where “G” stands for “globally” or “always”) are
abbreviations of A(g W⊥) and E(g W⊥), respectively.

A remark is in order. Even if negation ¬ is allowed only in front of basic propo-
sitions, it is easy to define ¬g for a generic CTL formula g, by“pushing down”the
negations: for instance ¬AX g ≡ EX¬g and ¬A(g1 W g2) ≡ E(¬g2 U(¬g1∧¬g2)).

We can use the expressivity of CTL to specify both temporal conditions, by
using the temporal operators “X”, “U”, “W”, “F”, and “G”, and conditions on the
“strength”of the requirement, by distinguishing, by means of the path quantifiers
“A” and “E”, whether a temporal requirement should hold for all the possible
or just some of the possible executions. For instance, we might require that the
system “tries” to reach a certain state, and if it does not manage to do so, it
guarantees that some safe state is maintained. As an example, we can require
that a mobile robot tries to reach a given location, but guarantees to avoid
dangerous rooms all along the path. Or we can require that the robot keeps
moving back and forth between location A, and, if possible, location B. We thus
specify that the robot must pass through location A at each round, while it
should just pass through location B if possible: the “strength” of the require-
ments for the two locations is different. We can therefore classify goals according
to these two dimensions: temporal requirements and “strength” requirements.
For instance, goals with different temporal requirements are reachability goals,
i.e., requirements on which states should be reached, and mainteinability goals,
i.e., requirements on some property that should be maintained all along the ex-
ecution path. (Weak) Untill operators allow us to combine conditions on the
states to be reached and on the properties to be maintained until a given con-
dition is reached. Reachability and mainteinability goals can be strong or weak,
depending on whether the temporal condition should hold on all possible or just
for some execution path. Strong reachability goals are goals of the form AX g
and AF g. While Weak reachability goals are of the form EX g and EF g. We can
represent Strong and Weak maintainability goals with formulas AG g and EG g,
respectively. Of course, we can nest strong, weak, reachability, and maintenabil-
ity requirements to obtain more complex and structured goal, like with the goals
AG (AF g1 ∧ EF g2), AG EF g, and A(EF g1 W g2).

In the domain of Figure 1, let us consider first some examples of reachability
goals. The strong goal AF dep requires a plan that guarantees that the robot
reaches the department, in spite of nondeterminism. Notice that, intuitively,
there is no plan that satisfies such goal starting from the store1. The weak goal
EFdep requires a plan that has a possibility to reach the department. The plan
that moves the robot east, either to the lab or to the corridor, and from the
corridor goes south to the department, is a plan that satisfies EF dep. Reasonable
reachability requirements that are weaker than AF dep and stronger than EFdep
are Strong Cycling reachability goals, like A(EF dep W dep): it allows for those
execution loops that have always a possibility of terminating, and when they
do, the department is guaranteed to be reached. The goal A(¬lab U dep) is not
satisfiable since it states that the robot should reach the department by avoiding

1 Such goal can be expressed in CTL as store → AF dep.
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the laboratory, while the goal A(¬lab W dep) is weaker, since it is also satisfied
by any plan that never goes to the department and never goes to the laboratory.

The mainteinability goal AG EFdep intuitively means “maintain the possibil-
ity of reaching the department”. It is different from A(EF depW dep), since the
latter, after the department is reached, allows for any behaviour, e.g., staying in
a room different from the department forever.

The goal AF dep ∧ ¬AG lab states that the robot is guaranteed to reach
the department and is guranteed to never be in the lab. It is different from
A(¬lab U dep), which does not impose any condition after the department is
reached.

An interesting strong mainteinability goal is AG (AF store ∧ EF dep), which
requires that the robot keeps moving back and forth between the store, and, if
possible, the department. We can add the condition that the laboratory is never
reached with the goal AG (AF store∧EFdep)∧¬AG lab. Both these two goals are
satisfied by a plan that keeps trying to move back and forward the robot between
the store and the department, i.e., it tries to move the robot to the department
and then, independently of whether the robot manages to go through the door,
it moves back the robot to the store, and so on.

We can also compose reachability and maintainability goals in arbitrary ways.
For instance, lab→ AF AG¬lab states that a robot that is in the lab, should even-
tually move out of it, and never come back. The weaker goal lab → EF AG¬lab
states that after moving out of the lab, the robot should have always a possibility
not to come back.

We can now define valid plans, i.e., plans that satisfy CTL goals, i.e., we define
τ |= g, where τ is the execution tree of a plan π for domain D, and g is a CTL
goal. The definition of predicate |= is based on the standard semantics of CTL
[17]. A planning algorithm can thus search the state space by progressing CTL
goals, see, e.g., [30]. A conceptually similar, even if technically different, approach
has been applied to the problem of planning under uncertainty in observations.

The framework can be extended to deal with uncertainty in observation by
considering that some states are indistinguishable, and observations and obser-
vation functions must be considered in place of states and state transitions,
according to the lines presented in [8,6,11].

5 Planning for Composing Purchase and Delivery Web
Services

In this section we consider a rather different planning domain, first introduced in
[34]. The problem is to automatically compose a furniture purchase & delivery
service, say the P&S service, which satisfies some user request. We do so by com-
bining two separate, independent, and available services: a furniture producer
Producer, and a delivery service Shipper. The idea is that of combining these two
services so that the user may directly ask the composed service P&S to purchase
and deliver a given item at a given place. To do so, we exploit a description of
the expected interaction between the P&S service and the other actors. In the
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case of the Producer and of the Shipper the interactions are defined in terms of
the service requests that are accepted by the two actors. In the case of the User,
we describe the interactions in terms of the requests that the user can send to
the P&S. As a consequence, the P&S service should interact with three available
services: Producer, Shipper, and User (see Figure 4). These are the three available
services W1, W2, and W3, which can be described in standard languages for web
services, like bpel4ws [4].

The problem is to automatically generate the implementation of the P&S
service, say W . Producer accepts requests for providing information on a given
product and, if the product is available, it provides information about its size.
The Producer also accepts requests for buying a given product, in which case it
returns an offer with a cost and production time. This offer can be accepted or
refused by the external service that has invoked the Producer. The Shipper service
receives requests for transporting a product of a given size to a given location.
If delivery is possible, Shipper provides a shipping offer with a cost and delivery
time, which can be accepted or refused by the external service that has invoked
Shipper. The User sends requests to get a given item at a given location, and
expects either a negative answer if this is not possible, or an offer indicating the
price and the time required for the service. The user may either accept or refuse
the offer. Thus, a typical interaction between the user, the combined purchase
& delivery service P&S, the producer, and the shipper would go as follows:

1. the user asks P&S for an item i, that he wants to be transported at location
l;

2. P&S asks the producer for some data about the item, namely its size, the
cost, and how much time does it take to produce it;

3. P&S asks the delivery service the price and time needed to transport an
object of such a size to l;

4. P&S provides the user an offer which takes into account the overall cost (plus
an added cost for P&S) and time to achieve its goal;

5. the user sends a confirmation of the order, which is dispatched by P&S to
the delivery and producer.

Of course this is only the nominal case, and other interactions should be con-
sidered, e.g., for the cases the producer and/or delivery services are not able to
satisfy the request, or the user refuses the final offer.

The component web services described in the example above can be modeled
as state transition systems: web services can be in one of their possible states
(some of which are marked as initial states) and can evolve to new states as a
result of performing some actions, which in this case are the actions of sending or
receiving messages, as well as internal actions that cannot be observed by exter-
nal web services. A transition function describes how this exchange of messages
or internal evolutions lead from one state to possibly many different states. Web
services evolutions can be monitored through observations describing the visible
part of a web service. An observation function defines the observation associated
to each state of the service.
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Fig. 4. The Purchase & Ship Example

State transition systems modeling web services are nondeterministic, i.e., one
action may result in several different outcomes. This is modeled by the fact that
the transition function returns sets of states. Nondeterminism is needed since the
system cannot often know a priori which outcome will actually take place, e.g.,
whether it will receive a confirmation or a cacellation from an external service.
Moreover, our state transition systems are partially observable, i.e., external
services can only observe part of their system state, e.g., its external commu-
nications can be observed but other services do not have access to its internal
status and variables. Partial observability is modeled by the fact that different
states may result in the same observation.

Intuitively, we associate to each available web service a state transition system
as follows. The states S are used to codify the different steps of evolution of the
service (e.g., what position has been reached inside the composite process of
the shipper) and the values of the predicates defined internally to the service.
The actions A are used to model the invocation of the external processes. The
actions also model the invocations by the external actors of the services that
the composed service should provide. The observations O are used to model
the outputs of the invoked external processes (and the inputs of the external
invocations).

Composition goals express requirements for the service to be automatically
generated. They should represent conditions on the temporary evolution of ser-
vices, and, as shown by the next example, requirements of different strengths
and preference conditions.

In our example (see Figure 4), a reasonable composition goal for the P&S
service is the following:

Goal 1: The service should try to reach the ideal situation where the user
has confirmed his order, and the service has confirmed the associated (sub-
)orders to the producer and shipper services. In this situation, the data
associated to the orders have to be mutually consistent, e.g., the time for
building and delivering a furniture shall be the sum of the time for building
it, and that for delivering it.

However, this is an ideal situation that cannot be enforced by the P&S service:
the product may not be available, the shipping may not be possible, the user
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may not accept the total cost or the total time needed for the production and
delivery of the item... We would like the P&S service to behave properly also in
these cases, and get to a consistent situation, where the P&S confirms none of
the two services for production and delivering, otherwise P&S is likely, e.g., to
loose money. More precisely, we have also the following goal:

Goal 2: The P&S service should absolutely reach a fall-back situation where
every (sub-)order has been canceled. That is, there should be no chance that
the service has committed to some (sub-)order if the user can cancel his
order.

Some remarks are in order. First of all, there is a difference in the “strength” in
which we require Goal 1 and Goal 2 to be satisfied. We know that it may be
impossible to satisfy Goal 1: we would like the P&S service to try (do whatever
is possible) to satisfy the goal, but we do not require that the service guarantees
to achieve it in all situations. The case is different for Goal 2: there is always a
possibility for the P&S service to cancel the orders to the producer and shipper,
and to inform the user. We can require a guarantee of satisfaction of this goal,
in spite of any behavior of the other services. Moreover, Goal 1 and Goal 2 are
not at the same level of desire. Of course we would not like a P&S service that
satisfies always Goal 2 (e.g., by refusing all requests from the user) even when it
would be possible to satisfy Goal 1. We need then to express a strong preference
for Goal 1 w.r.t. Goal 2. Informally, we can therefore describe the composition
goal as follows:

Composition Goal: Try to satisfy Goal 1, upon failure, do satisfy Goal 2.

As the previous example shows, composition goals need the ability to express
conditions on the whole behaviour of a service, conditions of different strengths,
and preferences among different subgoals. The EaGLe language [27] has been
designed with the purpose to satisfy such expressiveness requirements. Let propo-
sitional formulas p ∈ Prop define conditions on the states of a state transition
system. Composition goals g ∈ G over Prop are defined as follows:

g := p | g And g | g Then g | g Fail g | Repeat g |
DoReach p | TryReach p | DoMaint p | TryMaint p

Goal DoReach p specifies that condition p has to be eventually reached in a
strong way, for all possible non-deterministic evolutions of the state transition
system. Similarly, goal DoMaint q specifies that property q should be main-
tained true despite non-determinism. Goals TryReach p and TryMaint q are
weaker versions of these goals, where the plan is required to do “everything that
is possible” to achieve condition p or maintain condition q, but failure is accepted
if unavoidable. Construct g1 Fail g2 is used to model preferences among goals
and recovery from failure. More precisely, goal g1 is considered first. Only if the
achievement or maintenance of this goal fails, then goal g2 is used as a recovery
or second-choice goal. Consider for instance goal TryReach c Fail DoReach d.
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The sub-goal TryReach c requires to find a plan that tries to reach condition
c. During the execution of the plan, a state may be reached from which it is not
possible to reach c. When such a state is reached, goal TryReach c fails and the
recovery goal DoReach d is considered. Goal g1 Then g2 requires to achieve
goal g1 first, and then to move to goal g2. Goal Repeat g specifies that sub-goal
g should be achieved cyclically, until it fails. Finally, goal g1 And g2 requires
the achievement of both subgoals g1 and g2. A formal semantics and a planning
algorithm for EaGLe goals in fully observable nondeterministic domains can be
found in [27].

The automated composition task can be performed by the planner as follows.
The planner has two inputs: the composition goal and the planning domain
which represents all the ways in which the component services W1, W2, and W3
can evolve. The component services are represented by state transition systems,
say, Σ1, Σ2, and Σ3. Formally, this combination is a synchronous product.

Σ = Σ1 ×Σ2 ×Σ3

The automated composition task consists in finding a plan that satisfies the com-
position goal G over a domain Σ. We are interested in complex plans, that may
encode sequential, conditional and iterative behaviors, and are thus expressive
enough for representing the flow of interactions of the synthesized composed ser-
vice with the other services and expressive enough for representing the required
observations over the other services. We therefore model a plan as an automaton.
The automaton is defined from a set of plan contexts, one of which is the initial
context, and that represents the goal to be satisfied. Transitions in the automa-
ton defined through functions that determine which action has to be executed
(depending on the context) and how the context change. An action function,
given a context and an observation, returns an action. A context function, given
a context and an observation, returns a context..

The contexts are therefore the internal states of the plan; they permit to
take into account, e.g., the knowledge gathered during the previous execution
steps. Notice that actions to be executed depend on the observation and on the
context, and, once an action is executed, the context may change. Action and
context functions are deterministic (we do not consider nondeterministic plans),
and can be partial, since a plan may be undefined on the context-observation
pairs that are never reached during plan execution. If the plan is obtained from
a composition goal, then the contexts correspond to the sub-formulas of the
goal. The initial context is the original goal, the subsequent contexts obtained
by applying the context function are the subgoals that need still to be solved
to find a plan. For instance, in a plan for the composition goal of the previous
example one would have some contexts associated to Goal1 and other contexts
associated to Goal2.

The execution of a plan over a domain can be described in terms of transi-
tions between configurations that describe the state of the domain and of the
plan. Intuitively, a configuration is a snapshot of the domain controlled by the
plan. Due to the nondeterminism in the domain, we may have an infinite num-
ber of different executions of a plan. We provide a finite presentation of these
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executions with an execution structure, i.e, a Kripke Structure [17] with con-
figurations as states. The execution structure represents the evolutions of the
domain D controlled by the plan π. It is the execution structure Dπ that must
satisfy the composition goal G. If Dπ |= G, we say that π is a valid plan for G
on D. A formal definition of Dπ |= G can be found in [27].

Given a composition goal and a planning domain, we use algorithms for plan-
ning with EaGLe goals, according to the approaches described in [34,27]. We
have therefore the algorithms for generating a valid plan π that satisfies the com-
position goal. Since π is an automaton, it can be easily translated to executable
process languages, like bpel4ws.

6 Conclusion

In this paper, after providing a framework for planning under uncertainty in
action execution and observations, we discussed how this problem is relevant
to different application domains, such as planning for automating robots’ tasks
as well as planning for the automated composition of web services. In spite
of the different characteristics of the domains, this paper shows that similar
techniques can be used to automate the planning and composition tasks. Another
application domain in which planning techniques similar to the ones described
in this paper have been applied is planning for supporting the development of
controllers for space applications, see, e.g., [2,1].
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Abstract. The paper presents an approach to reasoning about Web
services in a temporal action theory. Web services are described by spec-
ifying their interaction protocols in an action theory based on a dynamic,
linear-time, temporal logic. The proposed framework is based on a social
approach to agent communication, where the effects of communicative
actions allow changes in the social state, and interaction protocols are
defined in terms of the creation and fulfillment of commitments and
permissions among the agents. We show how to introduce epistemic op-
erators in the action theory to deal with incomplete information, and we
address the problem of verifying properties of Web services, as well as
the problem of reasoning about the composition of Web services.

1 Introduction

Autonomous agents can communicate, cooperate and negotiate using commonly
agreed communication languages and protocols. One of the central issues in the
field concerns the specification of conversation policies (or interaction protocols),
which govern the communication between software agents in an agent commu-
nication language [4].

To allow for the flexibility needed in agent communication [10,14] new ap-
proaches have been proposed, which overcome the limitations of the traditional
transition net approach, in which the specification of interaction protocols is
done by making use of finite state machines. A particularly promising approach
to agent communication, first proposed by Singh [21,22], is the social approach
[5,11,14]. In the social approach, communicative actions affect the “social state”
of the system, rather than the internal (mental) states of the agents. The so-
cial state records social facts, like the permissions and the commitments of the
agents.

In this paper, we adopt a social approach in the specification of the interac-
tions among Web services and, in particular, we address the problem of service
verification and that of service composition [15,18,23]. In our proposal, Web ser-
vices are described by specifying their interaction protocols in an action theory
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based on a dynamic, linear-time, temporal logic. Such logic has been used in [7,9]
to provide the specification of interaction protocols among agents and to allow
the verification of protocol properties as well as the verification of the compliance
of a set of services with a protocol. The Web service domain is well suited for this
kind of formalization. The proposed framework provides a simple formalization
of the communicative actions in terms of their effects and preconditions and the
specification of an interaction protocol by means of temporal constraints.

To accommodate the needs of the application domain, in which information
is inherently incomplete, in the Section 2, we extend the action theory defined in
[9] to deal with incomplete information. More precisely, we introduce epistemic
modalities in the language to distinguish what is known about the social state
from what is unknown. In this context, the communicative actions by means of
which the services interact can be regarded as knowledge-producing actions, and
are similar to sensing actions in the context of planning. In order to deal with the
frame problem, we introduce a completion construction on the epistemic domain
description, which defines suitable successor state axioms.

In Section 3, we show how a Web service can be specified by modeling its in-
teraction protocol in a social approach. We consider, as an example, a service for
purchasing a good, whose interaction protocol has the following structure: the cus-
tomer sends a request to the service, the service replies with an offer or by saying
that the service is not available, andfinally, if the customer receives the offer, he/she
may accept or refuse it. Communicative actions, such as offer or accept, are mod-
eled in terms of their effects on the social state (action laws). The protocol is speci-
fied by putting constraints on the executability of actions (precondition laws) and
by temporal constraints specifying the fulfillment of commitments.

In Section 4, we show that several kinds of verification (both runtime and
static verification) can be done on the services and the related verification prob-
lems can be modeled as satisfiability and validity problems in the logic. We
make use of an automata-based approach to solve these problems and, in partic-
ular, we work on the Büchi automaton which can be extracted from the logical
specification of the protocol.

In Section 5, we then consider the problem of composing Web services, by
referring to an example consisting of two services for purchasing and for shipping
goods. We define the service composition problem as a planning problem, whose
solution requires building a conditional plan and allowing it to interact with the
two services. The plan can be obtained from the Büchi automaton derived from
the logical specification of the protocol. We address the problem of proving the
correctness of a given service implementation with respect to the specification
of the component services.

2 The Action Theory

In this section, we describe the action theory that is used in the specification of
the services. We first introduce the temporal logic on which our action theory is
based. Then we introduce epistemic modalities and domain descriptions.
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2.1 Dynamic Linear-Time Temporal Logic

We briefly define the syntax and semantics of DLTL as introduced in [12]. In
such a linear-time, temporal logic the next state modality is indexed by actions.
Moreover, (and this is the extension to LTL) the until operator is indexed by
programs in Propositional Dynamic Logic (PDL).

Let Σ be a finite non-empty alphabet. The members of Σ are actions. Let Σ∗

and Σω be the set of finite and infinite words on Σ, where ω = {0, 1, 2, . . .}. Let
Σ∞ =Σ∗ ∪ Σω. We denote by σ, σ′ the words over Σω and by τ, τ ′ the words
over Σ∗. Moreover, we denote by ≤ the usual prefix ordering over Σ∗ and, for
u ∈ Σ∞, we denote by prf(u) the set of finite prefixes of u.

We define the set of programs (regular expressions) P rg(Σ) generated by Σ
as follows:

P rg(Σ) ::= a | π1 + π2 | π1; π2 | π∗

where a ∈ Σ and π1, π2, π range over P rg(Σ). A set of finite words is associated
with each program by the usual mapping [[ ]] : P rg(Σ)→ 2Σ∗

.
Let P = {p1, p2, . . .} be a countable set of atomic propositions containing "

and ⊥. We define:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ).
A model of DLTL(Σ) is a pair M = (σ, V ) where σ ∈ Σω and V : prf (σ) → 2P

is a valuation function. Given a model M = (σ, V ), a finite word τ ∈ prf (σ) and
a formula α, the satisfiability of a formula α at τ in M , written M, τ |= α, is
defined as follows (we omit the standard definition for the boolean connectives):

– M, τ |= p iff p ∈ V (τ);
– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf (σ) and M, ττ ′ |=

β. Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′1, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a model M = (σ, V ) and a finite word
τ ∈ prf (σ) such that M, τ |= α.

The formula αUπβ is true at τ if “α until β” is true on a finite stretch of
behavior which is in the linear-time behavior of the program π. The derived
modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ "Uπα and [π]α ≡
¬〈π〉¬α. Furthermore, if we let Σ = {a1, . . . , an}, the U , © (next), � and �

operators of LTL can be defined as follows:©α ≡
∨

a∈Σ〈a〉α (i.e., α holds in the
state obtained by executing any action in Σ) , αUβ ≡ αUΣ∗

β, �α ≡ "Uα,
�α ≡ ¬�¬α, where, in UΣ∗

, Σ is taken to be a shorthand for the program
a1 + . . . + an. Hence both LTL(Σ) and PDL are fragments of DLTL(Σ).

As shown in [12], DLTL(Σ) is strictly more expressive than LTL(Σ) and the
satisfiability and validity problems for DLTL are PSPACE complete problems.

1 We define τ ≤ τ ′ iff ∃τ ′′ such that ττ ′′ = τ ′. Moreover, τ < τ ′ iff τ ≤ τ ′ and τ 
= τ ′.
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2.2 Epistemic Modalities

In the following, we need to describe the effects of communicative actions on
the social state of the agents. In particular, we want to represent the fact that
each agent can see only part of the social state as it is only aware of some of the
communicative actions in the conversation (namely those it is involved in as a
sender or as a receiver). For this reason, we introduce knowledge operators to
describe the knowledge of each agent as well as the knowledge shared by groups
of agents. More precisely, we introduce a modal operator Ki to represent the
knowledge of agent i and the modal operator KA, where A is a set of agents,
to represent the knowledge shared by agents in A. Groups of agents acquire
knowledge about social facts when they interact by exchanging communicative
actions. The modal operators Ki and KA are both of type KD. They are nor-
mal modalities ruled by the axiom schema Kϕ → ¬K¬ϕ (seriality). Though the
usual modal logic used to represent belief operators is KD45, in this formal-
ization we do not add the positive and negative introspection axioms to belief
modality K, because, following the solution proposed in [1], we restrict epis-
temic modalities to be used in front of literals. In particular, epistemic modal-
ities neither can occur nested nor can be applied to a boolean combination of
literals.

The relations between the modalities Ki and KA are ruled by the following
interaction axiom schema: KAϕ → Kiϕ, where i ∈ A, meaning that what is
knowledge of a group of agents is also knowledge of each single agent in the group.
As usual, for each modality Ki (respectively, KA) we introduce the modalityMi

(resp. MA), which is defined as the dual of Ki, i.e. Miϕ is ¬Ki¬ϕ.

2.3 Domain Descriptions

The social state of the protocol, which describes the stage of execution of the
protocol from the point of view of the different agents, is described by a set of
atomic properties called fluents, whose epistemic value in a state may change
with the execution of communicative actions.

Let P be a set of atomic propositions, the fluent names. A fluent literal l is
a fluent name f or its negation ¬f . An epistemic fluent literal is a modal atom
Kl or its negation ¬Kl, where l is a fluent literal and K is an epistemic operator
Ki or KA. We will denote by Lit the set of all epistemic literals.

An epistemic state (or, simply, a state) is defined as a complete and consistent
set of epistemic fluent literals, and it provides, for each agent i (respectively for
each group of agents A) a three-valued interpretation in which each literal l is true
when Kil holds, false when Ki¬l holds, and undefined when both ¬Kil and ¬Ki¬l
hold. Observe that, given the property of seriality, consistency guarantees that
a state cannot contain both Kf and K¬f , for some epistemic modality K and
fluent f . In fact, from Kf it follows by seriality that ¬K¬f , which is inconsistent
with K¬f .

In the following we extend the action theory defined in [9] to accommodate
epistemic literals. A domain description D is defined as a tuple (Π, C), where Π
is a set of (epistemic) action laws and causal laws, and C is a set of constraints.
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The action laws in Π have the form:

�(Kl1 ∧ . . . ∧ Kln → [a]Kl) (1)
�(Ml1 ∧ . . . ∧Mln → [a]Ml) (2)

with a ∈ Σ, and K is a knowledge modality. The meaning of (1) is that executing
action a in a state where l1, . . . , ln are known (to be true) causes l to become
known, i.e. it causes the effect Kl to hold. As an example the law �(Kfragile →
[drop]Kbroken) means that, after executing the action of dropping a glass the
glass is known to be broken, if the action is executed in a state in which the
glass is known to be fragile. (2) is necessary in order to deal with ignorance
about preconditions of the action a. It means that the execution of a may affect
the beliefs about l, when executed in a state in which the preconditions are
considered to be possible. When the preconditions of a are unknown, this law
allows to conclude that the effects of a are unknown as well. �(Mfragile →
[drop]Mbroken) means that, after executing the action of dropping a glass, the
glass may be broken, if the action is executed in a state in which the glass may
be fragile (i.e. K¬fragile does not hold).

The causal laws in Π have the form:

�((Kl1 ∧ . . . ∧ Kln ∧©(Kln+1 ∧ . . . ∧ Klm)→©Kl) (3)
�((Ml1 ∧ . . . ∧Mln ∧©(Mln+1 ∧ . . . ∧Mlm)→©Ml) (4)

The meaning of (3) is that if l1, . . . , ln are known in a state and ln+1, . . . , lm
are known in the next state, then l is also known in the next state. Such laws
are intended to expresses “causal” dependencies among fluents. The meaning of
causal law (4) can be defined accordingly.

The constraints in C are, in general, arbitrary temporal formulas of DLTL.
Constraints put restrictions on the possible correct behaviors of a protocol. The
kind of constraints we will use in the specification of a protocol include the
observations on the value of epistemic fluent literals in the initial state and
the precondition laws. The initial state Init is a (possibly incomplete) set of
epistemic literals, which is made complete by adding ¬Kl to Init when Kl �∈ Init.

The precondition laws have the form:

�(α → [a]⊥),

with a ∈ Σ and α an arbitrary non-temporal formula containing a boolean
combination of epistemic literals. The meaning is that the execution of an action
a is not possible if α holds (i.e. there is no resulting state following the execution
of a if α holds). Observe that, when there is no precondition law for an action,
the action is executable in all states.

In order to deal with the frame problem, we extend the solution proposed in
[9] to the epistemic case. We define a completion construction which, given a
domain description, introduces frame axioms for all frame fluents in the style of
the successor state axioms introduced by Reiter [20] in the situation calculus.
The completion construction is applied only to the action laws and causal laws
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in Π and not to the constraints. The value of each epistemic fluent persists from
a state to the next one unless its change is caused by the execution of an action
as an immediate effect (of an action law) or an indirect effect (of the causal
laws). We call Comp(Π) the completion of a set of laws Π .

Let Π be a set of action laws and causal laws. Π may contain action laws of
the form:

�(Kαi → [a]Kf) �(Kβj → [a]K¬f),
�(Mαi → [a]Mf) �(Mβj → [a]M¬f),

as well as causal laws of the form

�((Kα ∧©Kβ) →©Kl),
�((Mα ∧©Mβ)→©Ml),

where a ∈ Σ and, as a shorthand,Kα,Kβ,Kαi,Kβj are conjunctions of epistemic
fluents of the form Kl1 ∧ . . .∧Kln and Mα,Mβ,Mαi,Mβj are conjunctions of
epistemic literals of the form Ml1 ∧ . . . ∧Mln.

Observe that, given the definition of the next operator © (namely, ©α ≡∨
a∈Σ〈a〉α), the first causal law above can be written as follows:

�((Kα ∧
∨

a∈Σ〈a〉Kβ) →
∨

a∈Σ〈a〉Kl),

Observe also that, when a given action a is executed in a state (i.e. in a world
of a model), this is the only action executed in it, since models of DLTL are
linear (and each models describes a single run on the protocol). Hence, from the
formula above it follows:

(*) �((Kα ∧ 〈a〉Kβ) → 〈a〉Kl).

Moreover, as the axioms 〈a〉φ → [a]φ and 〈a〉"∧ [a]φ → 〈a〉φ hold in DLTL (see
[12]), from (*) we can get:

(**) �(〈a〉" → ((Kα ∧ [a]Kβ) → [a]Kl)).

This formula has a structure very similar to action laws. We call these formulas
normalized causal laws. A similar transformation can be applied to the second
causal law, giving: �(〈a〉" → ((Mα ∧ [a]Mβ)→ [a]Ml)).

The action laws and causal laws for a fluent f in Π can then have the following
forms:

�(〈a〉" → (Kαi ∧ [a]Kγi → [a]Kf)) �(〈a〉" → (Kβj ∧ [a]Kδj → [a]K¬f))
�(〈a〉" → (Mαi ∧ [a]Mγi → [a]Mf)) �(〈a〉" → (Mβj ∧ [a]Mδj → [a]M¬f))

We define the completion of Π as the set of formulas Comp(Π) containing,
for all actions a and fluents f , the following axioms:

�(〈a〉" → ([a]Kf ↔ (
∨

i(Kαi ∧ [a]Kγi)) ∨ (Kf ∧
∧

j(K¬βj ∨ ¬[a]Mδj))))
�(〈a〉" → ([a]K¬f ↔ (

∨
j(Kβj ∧ [a]Kδj)) ∨ (K¬f ∧

∧
i(K¬αi ∨ ¬[a]Mγi)))).
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These laws say that a fluent Kf (K¬f) holds either as (direct or indirect)
effect of the execution of some action a, or by persistency, since Kf (K¬f) held
in the state before the occurrence of a and its negation is not a result of a.
Observe that the two frame axioms above also determine the values in a state
for [a]Mf and for [a]M¬f .

Observe that, as a difference with [9], in a domain description we do not
distinguish between frame and non-frame fluents and in the following we assume
that all epistemic fluents are frame, that is, they are fluents to which the law of
inertia applies. The kind of non-determinism that we allow here is on the choice
of the actions to be executed, which can be represented by the choice construct
of regular programs.

3 Web Service Specification

In this section, we describe how the interface of a Web service can be defined by
specifying its interaction protocol. In the social approach [22,24] an interaction
protocol is specified by describing the effects of communicative actions on the
social state, and by specifying the permissions and the commitments that arise
as a result of the current conversation state. These effects, including the creation
of new commitments, can be expressed by means of action laws.

The action theory introduced above will be used for modeling communica-
tive actions and for describing the social behavior of agents in a multi-agent
system. In defining protocols, communicative actions will be denoted by ac-
tion name(s,r), where s is the sender and r is the receiver. In particular, two
special actions are introduced for each protocol Pn

begin Pn(s, r) and end Pn(s, r),

which are supposed to start and to finish each run of the protocol. For each
protocol, we introduce a special fluent Pn (where Pn is the “protocol name”)
which has to be true during the whole execution of the protocol: Pn is made true
by the action begin Pn(s, r) and it is made false by the action end Pn(s, r).

The use of social commitments has long been recognized as a “key notion” to
allow coordination and communication in multi-agent systems [13]. Among the
most significant proposals to use commitments in the specification of protocols
(or more generally, in agent communication) are those by Singh [22], Guerin and
Pitt [11], Colombetti [5].

In order to handle commitments and their behavior during runs of a protocol
Pn, we introduce two special fluents. One represents base-level commitments and
has the form C(Pn, i, j, α) meaning that in the protocol Pn agent i is commit-
ted to agent j to bring about α, where α is an arbitrary non-temporal formula
not containing commitment fluents. The second commitment fluent models con-
ditional commitments and has the form CC(Pn, i, j, β, α) meaning that in the
protocol Pn the agent i is committed to agent j to bring about α, if the condition
β is brought about.

Commitments are created as effects of the execution of communicative actions
in the protocol and they are “discharged” when they have been fulfilled. A
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commitment C(Pn, i, j, α), created at a given state of a run, is regarded to be
fulfilled in a run if there is a later state in the run in which α holds.

We introduce the following causal laws for automatically discharging fulfilled
commitments2:

(i) �(©α →©Ki,j(¬C(Pn, i, j, α)))
(ii)�((Ki,j(CC(Pn, i, j, β, α)) ∧©β)→©Ki,j(C(Pn, i, j, α)))
(iii)�((Ki,j(CC(Pn, i, j, β, α)) ∧©β)→©Ki,j(¬CC(Pn, i, j, β, α)))

A commitment to bring about α is considered fulfilled and is discharged (i) as
soon as α holds. A conditional commitment CC(Pn, i, j, β, α) becomes a base-
level commitment C(Pn, i, j, α) when β has been brought about (ii) and the
conditional commitment is discharged (iii).

We can express the condition that a commitment C(Pn, i, j, α) has to be
fulfilled before the “run” of the protocol is finished by the following fulfillment
constraint:

�(Ki,j(C(Pn, i, j, α)) → Pn U α)

We will call Comi the set of constraints of this kind for all commitments of
agent i. Comi states that agent i will fulfill all the commitments of which it is
the debtor.

At each stage of the protocol only some of the messages can be sent by the
participants, depending on the social state of the conversation. Permissions allow
to determine which messages are allowed at a certain stage of the protocol.
The permissions to execute communicative actions in each state are determined
by social facts. We represent them by precondition laws. Preconditions on the
execution of action a can be expressed as: �(α → [a]⊥) meaning that action a
cannot be executed in a state if α holds in that state. We call P ermi (permissions
of agent i) the set of all the precondition laws of the protocol pertaining to the
actions of which agent i is the sender.

Let us consider as an example a service for purchasing a good.

Example 1. There are two roles: A customer, denoted by C, and a producer, de-
noted by P . The communicative action of the protocol are: request(C, P ), mean-
ing that the customer sends a request for a product, offer(P, C) and not avail
(P, C), the producer sends an offer or says that the product is not available,
accept(C, P ) and refuse(C, P ), the customer accepts or refuses the offer. Fur-
thermore, as pointed out before, there will be the actions begin Pu(C, P ) and
end Pu(C, P ) to start and finish the protocol.

As mentioned before, the social state will contain only epistemic fluents. We
denote the social knowledge by KC,P , to mean that the knowledge is shared by
C and P .

The social state will contain the following fluents, which describe the protocol
in an abstract way: requested, the product has been requested, offered , the
product is available and an offer has been sent (we assume that ¬offered means

2 We omit the three similar rules with K replaced by M.
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that the product is not available), accepted, the offer has been accepted. The
fluent Pu means that the protocol is being executed.

Furthermore, we introduce some base-level commitments (to simplify the no-
tation, in the following we will use Kw

C,P (f) as a shorthand of the formula
KC,P (f) ∨ KC,P (¬f)):

C(Pu, C, P,KC,P (requested))
C(Pu, P, C,Kw

C,P (offered ))
C(Pu, C, P,Kw

C,P (accepted))

We also need the following conditional commitments:

CC(Pu, P, C,KC,P (requested),Kw
C,P (offered))

CC(Pu, C, P,KC,P (offered),Kw
C,P (accepted))

For instance, the first conditional commitment says that the producer is com-
mitted to send an offer, or to say that the product is not available, if a request
for the product has been made.

We can now give the action rules for the action of the protocol. We assume
all fluents to be undefined in the initial state (i.e., for each fluent f , for each
epistemic modality K, ¬Kf and ¬K¬f hold in the initial state), except for
fluent Pu which will be known to be false. The execution of begin Pu(C, P ) and
end Pu(C, P ) will have the following effects:

�[begin Pu(C, P )]KC,P (Pu) ∧
KC,P (C(Pu, C, P,KC,P (requested))) ∧
KC,P (CC(Pu, P, C,KC,P (requested),Kw

C,P (offered))) ∧
KC,P (CC(Pu, C, P,KC,P (offered ),Kw

C,P (accepted)))
�[end Pu(C, P )]KC,P (¬Pu)

After starting the protocol, the customer is committed to make a request, and
the conditional commitments are created.

The action laws for the remaining actions are the following:

�[request(C, P )]KC,P (requested)
�[offer (P, C)]KC,P (offered ) �[accept(C, P )]KC,P (accepted)
�[not avail(P, C)]KC,P (¬offered ) �[refuse(C, P )]KC,P (¬accepted)

We can now give the preconditions for the actions of the protocol.

�(¬KC,P (¬Pu)→ [begin Pu(C, P )]⊥)
�((¬KC,P (Pu) ∨ KC,P (requested))→ [request(C, P )]⊥)
�((¬KC,P (Pu) ∨ ¬KC,P (requested) ∨ Kw

C,P (offered ))→ [offer (P, C)]⊥)
�((¬KC,P (Pu)∨¬KC,P (requested)∨Kw

C,P (offered ))→ [not avail(P, C)]⊥)
�((¬KC,P (Pu) ∨ ¬KC,P (offered ) ∨ Kw

C,P (accepted))→ [accept(C, P )]⊥)
�((¬KC,P (Pu)∨¬KC,P (offered)∨Kw

C,P (accepted))→ [refuse(C, P )]⊥)
�(¬KC,P (Pu)→ [end Pu(C, P )]⊥)
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For instance, action request(C, P ) cannot be executed if it is not known that
the protocol has been started or if it is known that the request has already been
achieved (to avoid repeating the action).

A protocol is specified by giving a domain description, defined as follows:

Definition 1. A domain description D is a pair (Π, C) where

– Π is the set of the action and causal laws containing:
• the laws describing the effects of each communicative actions on the so-

cial state;
• the causal laws defining the commitment rules.

– C = Init ∧
∧

i(P ermi ∧ Comi) is the conjunction of the constraints on the
initial state of the protocol and the permissions P ermi and the commitment
constraints Comi of all the agents i.

Given a domain description D, we denote by Comp(D), the completed domain
description, the set of formulas: (Comp(Π) ∧ Init ∧

∧
i(P ermi ∧Comi)).

Definition 2. Given the specification of a protocol by a domain description D,
the runs of the system according the protocol are exactly the models of Comp(D).

Note that protocol “runs” are always finite, while the logic DLTL is character-
ized by infinite models. To take this into account, we assume that each domain
description of a protocol will be suitably extended with an action noop which
does nothing and which can be executed only after termination of the protocol,
so as to allow a computation to go on forever after termination of the protocol.

For instance in our example we have the following runs:

begin Pu(C, P ); request(C, P ); offer (P, C); accept(C, P ); end Pu(C, P )
begin Pu(C, P ); request(C, P ); offer (P, C); refuse(C, P ); end Pu(C, P )
begin Pu(C, P ); request(C, P ); not avail(P, C); end Pu(C, P )

4 Reasoning About Web Services

Once the interface of a service has been defined by specifying its protocol, several
kinds of verification can be performed on it as, for instance, the verification of
service compliance with the protocol at runtime, the verification of properties
of the protocol and the verification that a given implemented service, whose
behavior is known, is compliant with the protocol.

The verification that the interaction protocol has the property ϕ amounts to
show that the formula

(Comp(Π) ∧ Init ∧
∧
i

(P ermi ∧ Comi)) → ϕ, (5)

is valid, i.e. that all the admitted runs have the property ϕ.
Verifying that a set of services are compliant with a given interaction protocol

at runtime, given the history τ = a1, . . . , an describing the interactions of the



Reasoning About Web Services in a Temporal Action Logic 239

services (namely, the sequence of communicative messages they have exchanged),
amounts to checking if there is a run of the protocol containing that sequence of
communications. This can be done by verifying that the formula

(Comp(Π) ∧ Init ∧
∧
i

(P ermi ∧ Comi))∧ < a1; a2; . . . ; an > "

(where i ranges on all the services involved in the protocol) is satisfiable.
In the logic DLTL, a rigid protocol like the purchase protocol of Example 1

can be easily represented by means of a regular program, such as the following
regular program πPu:

begin Pu(C, P ); request(C, P );
((offer (P, C);

(accept(C, P ) + refuse(C, P )) +
not avail(P, C));

end Pu(C, P )

The correctness of this formulation of the protocol with respect to the formu-
lation given in Example 1 can be verified by proving that all runs of πPu satisfy
the permissions and commitments of the participants, i.e. that the following
formula is valid

(Comp(Π) ∧ Init ∧ 〈πPu〉")→
∧
i

(P ermi ∧ Comi) (6)

where 〈πPu〉" constrains each model to begin with an execution of πPu.
Further examples of property verification will be given in the next section.
Verification and satisfiability problems can be solved by extending the stan-

dard approach for verification of linear-time, temporal logic, based on the use
of Büchi automata. We recall that a Büchi automaton has the same structure
as a traditional finite state automaton, with the difference that it accepts in-
finite words. More precisely a Büchi automaton over an alphabet Σ is a tuple
B = (Q,→, Qin, F ) where:

• Q is a finite nonempty set of states;
• →⊆ Q×Σ ×Q is a transition relation;
• Qin ⊆ Q is the set of initial states;
• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf (σ) → Q such that:

• ρ(ε) ∈ Qin

• ρ(τ) a→ ρ(τa) for each τa ∈ prf (σ)

The run ρ is accepting iff inf(ρ)∩F �= ∅, where inf(ρ) ⊆ Q is given by q ∈ inf (ρ)
iff ρ(τ) = q for infinitely many τ ∈ prf (σ).

As described in [12], the satisfiability problem for DLTL can be solved in
deterministic exponential time, as for LTL, by constructing for each formula α ∈



240 A. Martelli and L. Giordano

DLTL(Σ) a Büchi automaton Bα such that the language of ω-words accepted
by Bα is non-empty if and only if α is satisfiable.

A more efficient approach for constructing a Büchi automaton from a DLTL
formula making use of a tableau-based algorithm has been proposed in [6]. Given
a formula ϕ, the algorithm builds a graph G(ϕ) whose nodes are labelled by sets
of formulas. States and transitions of the Büchi automaton correspond to nodes
and arcs of the graph. As for LTL, the number of states of the automaton is, in
the worst case, exponential in the size of the input formula, but in practice it is
much smaller.

Since the nodes of the graph G(ϕ) are labeled by sets of formulas, what we
actually obtain by the construction is a labeled Büchi automaton, which can be
defined by adding to the above definition a labeling function L : S → 2Lit, where
Lit is the set of all epistemic literals3. It is easy to obtain from an accepting run
of the automaton a set of models of the given formula, by completing the label
of each state in all consistent ways.

The validity of a formula α can be verified by constructing the Büchi au-
tomaton B¬α for ¬α: if the language accepted by B¬α is empty, then α is valid,
whereas any infinite word accepted by B¬α provides a counterexample to the
validity of α.

For instance, given a completed domain description

(Comp(Π) ∧ Init ∧
∧

i(P ermi ∧ Comi))

specifying a protocol, we can construct the corresponding labeled Büchi automa-
ton, such that all runs accepted by the automaton represent runs of the protocol.
In [9], we show how to take advantage of the structure of the problems considered
in this paper to optimize the construction of the Büchi automaton.

5 Composing Web Services

Assume now that we have a service Sh for shipping goods, and that the customer
wants to reason about the composition of the producer service of the previous
section and of this service. For simplicity we assume that the protocol of the
shipping service is the same as that of producer service. To distinguish the two
protocols we will add the suffix Pu or Sh to their actions and fluents, while the
role of the shipper will be denoted by S.

The domain description DPS of the composed service can be obtained by
taking the union of the sets of formulas specifying the two protocols: DPS =
DPu∪DSh. Since we want to reason from the side of the customer, we will replace
the epistemic operators KP,C and KS,C with KC , representing the knowledge
of the customer. Thus the runs of the composed service PS are given by the
interleaving of all runs of the two protocols.

The aim of the customer is to extract from the domain description of PS a
plan allowing it to interact with the two services. The goal of the plan will be

3 Note that epistemic literals are considered as atomic propositions.
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specified by means of a set of constraints Constr which will take into account
the properties of the composed service. For instance, the customer cannot re-
quest an offer to the shipping service if it has not received an offer from the
producer. This can be easily expressed by adding a new precondition to the
action request Sh(C, S):

�(¬KC(offered Pu)→ [request Sh(C, S)]⊥)

Other constraints cannot be easily expressed by means of preconditions, since
they involve more “global” properties of a run. For instance we expect that the
customer cannot accept only one of the offers of the two services. This property
can be expressed by the following formula

�〈accept Pu(C, P )〉 ↔ �〈accept Sh(C, S)〉
stating that the customer must accept both offers or none of them.

Then, the specification of the interaction protocol of the composed service
is given by DPS ∪ Constr, from which the customer will extract the plan. To
do this, however, we must first discuss an important aspect of the protocol, i.e.
nondeterminism.

We assume that, if a protocol contains a point of choice among different
communicative actions, the sender of these actions can choose freely which one to
execute, and, on the other hand, the receiver cannot make any assumption about
which of the actions it will receive. Therefore, from the viewpoint of the receiver,
that point of choice is a point of nondeterminism to care about. For instance,
the customer cannot know whether the service Pu will reply with offer Pu or
not avail Pu after receiving the request. Therefore the customer cannot simply
reason on a single choice of action, but he will have to consider all possible
choices of the two services, thus obtaining alternative runs, corresponding to a
conditional plan. An example of conditional plan is the following4

begin Pu; request Pu;
(offer Pu; begin Sh; request Sh;

(offer Sh; accept Pu; accept Sh; end Pu; end Sh +
not avail Sh; refuse Pu; end Pu; end Sh)) +

(not avail Pu; end Pu).

This plan is represented as a regular program, where, in particular, “+” is the
choice operator.

Since we are using a linear-time, temporal logic, the constraints in Constr
can only express properties dealing with a single run. For instance, the run
begin Pu; request Pu; offer Pu; accept Pu; begin Sh; request Sh; offer Sh; ac-
cept Sh; end Pu; end Sh is correct with respect to the above constraints, since
both offers are accepted. However, assume that the customer chooses to execute
this plan, and, after executing action request Sh, the shipping service replies
with not avail Sh. At this point there is no other way of continuing the execu-
tion, since the customer has already accepted the offer by the producer, while it
should have refused it.
4 We omit sender and receiver of communicative actions.
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The first step for obtaining a conditional plan consists in building the Büchi
automaton obtained from the domain description DPS and the constraints Con-
str. During the construction of the automaton, we will mark as AND states
those states whose outgoing arcs are labeled with actions whose sender is one
of the services, such as offer Pu or not avail Pu5. The plan can be obtained by
searching the automaton with a forward-chaining algorithm which considers all
AND states as branching points of the plan.

In this example, and in many similar cases, the size of the Büchi automaton
obtained from the specification of the protocol is small enough to be directly
manageable. In this case we might adopt a different approach to the construction
of a conditional plan, consisting of “pruning” once and for all the automaton by
removing all arcs which do not lead to an accepting state, and all AND states
for which there is some outgoing arc not leading to an accepting state. In this
way we are guaranteed that, if there is a run σ1; offer Sh; σ2, where σ1 and σ2
are sequences of actions, there must also be a run σ1; not avail Sh; σ3, for some
sequence of actions σ3. Therefore the customer can execute the first part σ1 of
the run, being sure that it will be able to continue with run σ3 if the shipping
service replies with not avail Sh. In other words, the customer will be able to act
by first extracting a linear plan, and begin executing it. If, at some step, one of
the services executes an action different from the one contained in the plan, the
customer can build a new plan originating from the current state, and restart
executing it.

In the construction of the conditional plan, we have taken into account only
the nondeterministic actions of the two services. However there are some choices
regarding the actions of the customer, such as accept Pu or refuse Pu, that
cannot be made at planning time. These nondeterministic choices can also be
considered in a conditional plan. In our example we might have the following
conditional plan πPS

begin Pu; request Pu;
((offer Pu; begin Sh; request Sh;

(offer Sh;
(accept Pu; accept Sh; end Pu; end Sh +
refuse Pu; refuse Sh; end Pu; end Sh) +

not avail Sh; refuse Pu; end Pu; end Sh)) +
(not avail Pu; end Pu))

Note that, in the case of nondeterministic actions of the customer, we are
not imposing all choices to be present in the conditional plan, as we did for the
actions of the other participants, because some choices might not be possible due
to the constraints. For instance, after accept Pu the customer must necessarily
execute accept Sh.

A different problem, which can be tackled in our formalism when the condi-
tional plan πPS is given, is that of verifying its correctness with respect to the

5 For simplicity we assume that there is no state whose outgoing arcs are labeled with
actions sent and received by the same agent.
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protocols of the composed services. This requires to verify that, in every run
of the conditional plan all the permissions and commitments of the component
services are satisfied, and can be done by proving that the formula∧

k

(Comp(Πk) ∧ Init ∧ 〈πPS〉" →
∧
k,j

(P ermk
j ∧ Comk

j ))

is valid, where k ranges over the different services and, for each k, j ranges over
all the participants of service k. In a similar way, it can be verified that the plan
πPS satisfies the constraints Constr defined above, by showing the validity of
the formula: ∧

k

(Comp(Πk) ∧ Init ∧ 〈πPS〉" → Constr).

Up to now the kind of reasoning performed on composed protocols has taken
into account only the “public” actions, i.e. the communicative actions of the
component protocols. However, in general, the customer should be able to use
“private” actions to reason about the information received from the services and
to decide what action to execute. Since the information sent by the services will
be available only at runtime, such an action should be considered as a nonde-
terministic action at planning time. We might easily extend our approach to
this case by extending the specification of the composed services with “private”
actions and fluents of the customer.

The approach described in this section can be applied to the more general
problem of building a new service that manages all interactions between the
customer and the two services, so that the customer interacts only with the new
service through a suitable protocol [19]. Given the protocol Cu specifying the
interactions between the customer and the new service, the new service can be
obtained by putting together the three protocols Cu, Pu and Sh, and by adding
suitable constraints similar to the ones given above. For instance we may state
that the offers of each of the two services can be accepted if and only if the
customer accepts them:

(�〈accept Pu〉 ↔ �〈accept Cu〉) ∧ (�〈accept Sh〉 ↔ �〈accept Cu〉)

We can then proceed as before by building the Büchi automaton from the
composed protocol and extracting from it a conditional plan, as for instance:

begin Cu; request Cu;
begin Pu; request Pu;

((offer Pu; begin Sh; request Sh;
((offer Sh; offer Cu;

(accept Cu; accept Pu; accept Sh; end Pu; end Sh; end Cu +
refuse Cu; refuse Pu; refuse Sh; end Pu; end Sh; end Cu)) +

not avail Sh; not avail Cu; refuse Pu; end Pu; end Sh; end Cu)) +
not avail Pu; not avail Cu; end Pu; end Cu)

This plan can be considered as a specification of the (abstract) behavior of
the new service.
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6 Conclusions and Related Work

In this paper we have presented an approach for the specification and verification
of interaction protocols in a temporal logic (DLTL). Our approach provides a
unified framework for describing different aspects of multi-agent systems. Pro-
grams can be expressed as regular expressions, (communicative) actions can be
specified by means of action and precondition laws, social facts can be speci-
fied by means of commitments whose dynamics are ruled by causal laws, and
temporal properties can be expressed by means of temporal formulas. To deal
with incomplete information, we have introduced epistemic modalities in the
language, to distinguish what is known about the social state from what is un-
known. In this framework, various verification problems can be formalized as
satisfiability and validity problems in DLTL, and they can be solved by devel-
oping automata-based techniques.

Our proposal is based on a social approach to agent communication, which
allows a high level specification of the protocol and does not require a rigid spec-
ification of the correct action sequences. For this reason, the approach appears
to be well suited to reason about composition of Web services. In [8] we have
addressed the problem of combining two protocols to define a new more special-
ized protocol. Here we have shown that service composition can be modeled by
taking the formulas giving the domain descriptions of the services, by adding
suitable temporal constraints to them, and translating the set of formulas into
a Büchi automaton from which a (conditional) plan can be obtained.

The proposal of representing states as sets of epistemic fluent literals is based
on [1], which presents a modal approach for reasoning about dynamic domains
in a logic programming setting. A similar “knowledge-based” approach has been
used to define the PKS planner, allowing to plan under conditions of incom-
plete knowledge and sensing [16]. PKS generalizes the STRIPS approach, by
representing a state as a set of databases that model the agent’s knowledge.

The problem of the automated composition of Web services by planning in
asynchronous domains is addressed in [19], and extended to the “knowledge
level” in [18]. Web services are described in standard process modeling and
execution languages, like bpel4ws, and then automatically translated into a
planning domain that models the interactions among services at the knowl-
edge level. The planning technique [19] consists of the following steps. The
first step constructs a parallel state transition system that combines the given
services in a planning domain. The next step consists of formalizing the re-
quirements for the composite service as a goal in a specific language which al-
lows to express extended goals [3]. Finally the planner generates a plan that
is translated into a state transition system and into a concrete bpel4ws pro-
cess. The planning problem is solved by making use of the state-of-the-art plan-
ner MBP.

The approach to Web service composition presented in this paper has analo-
gies with the one presented in [18], particularly with respect to the sequence of
steps performed to build the plan. However, the approach of [18] is based on
a planning technique derived from model checking for branching-time temporal
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logic CTL [17], while our approach is based on the dynamic, linear-time, tempo-
ral logic DLTL, and on the translation of DLTL formulas into Büchi automata.

In [2] the problem of automatic service composition is addressed assuming
that a set of available services (whose behavior is represented by finite state
transition systems) is given together with a possibly incomplete specification of
the sequences of actions that the client would like to realize. The problem of
checking the existence of a composition is reduced to the problem of checking
the satisfiability of a PDL formula. This provides an EXPTIME complexity up-
per bound. In contrast to [2], in our approach client requirements are specified
by providing a set of conditions that the target service must satisfy. The com-
position problem considered in [2] is a generalization of the verification problem
we have addressed at the end of section 5 for the case when the protocol of the
target service is underspecified and the component e-services that will provide
the services required by the client are not known. The extension of our approach
to deal with underspecified specifications of the target service will be the subject
of further investigation.
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Abstract. The Web has grown from a simple hypertext system for re-
search labs to an ubiquitous information system including virtually all
human knowledge, e.g., movies, images, music, documents, etc. The tra-
ditional browsing activity seems to be often inadequate to locate informa-
tion satisfying the user needs. Even search engines, based on the Informa-
tion Retrieval approach, with their huge indexes show many drawbacks,
which force users to sift through long lists of results or reformulate queries
several times. Recently, an important research activity effort has been fo-
cusing on this vast amount of machine-accessible knowledge and on how
it can be exploited in order to match the user needs. The personaliza-
tion and adaptation of the human-computer interaction in information
seeking by means of machine learning techniques and in AI-based repre-
sentations of the information help users to address the overload problem.
This chapter illustrates the most important approaches proposed to per-
sonalize the access to information, in terms of gathering resources related
to given topics of interest and ranking them as a function of the current
user needs and activities, as well as examples of prototypes and Web
systems.

1 Introduction

The decentralized and unregulated work of millions of authors spread around the
world have allowed the Web to grow constantly since its creation. At the beginning
of 2005, the part of the Web considered as potentially indexable by major engines
was estimated to consist of at least 11.5 billion pages [23]. As the number of Internet
users and the number of accessible Web pages grow, it is becoming increasingly
difficult for users to find documents that are relevant to their current information
needs. Therefore, it is understandable that the research field devoted to applying
AI techniques to the problem of discovering and analyzing Web resources has been
drawing much attention over the last few years [29].

The browsing interaction paradigm, where users analyze Web pages one at a
time is a useful approach for reading and comprehending the content of a hyper-
text, but it is not suitable for locating a specific piece of information. A few years
ago, a second interaction paradigm was introduced: querying a search engine. Di-
rectly retrieving documents from an index of millions of documents in a fraction of
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a second is the paramount advantage of this approach,which is based on the classic
Information Retrieval (IR) model. Nevertheless, despite having different goals and
needs, two users who submit the same query obtain the same result list. Moreover,
by analyzing search behavior, it is possible to see that many users are not able to
accurately express their needs in exact query terms.

Search engines are the first search approach of users [49]. Personalized search
aims at building systems which try to serve up individualized pages to the user;
such systems are based on some form of model of the needs and context of
the user’s activities. For instance, some search engines employ the collaborative
or community-based approach in order to suggest pages that other users, who
submitted the same query, selected frequently [50].

Because of the vastness of the personalized search domain, in this chapter we
focus on some of the most recent algorithms, techniques and approaches strongly
related to the AI field. For instance, in order to model the user needs and to
assign internal representations to Web documents, approaches based on knowl-
edge representation and machine learning, such as semantic networks and frames
[3,33,36], neural networks [2,8,22] and decision trees [27], have been successfully
developed obtaining interesting results. Ontology-based search and autonomous
crawling based on AI algorithms are two further interesting research activities
addressing personalized search.

The rest of this chapter is organized as follows: Section 2 presents some AI-
based approaches recently developed in order to model user needs and Web doc-
uments for the personalization task. Section 3 discusses some further emerging
trends in personalized search. Finally, Section 4 closes this chapter.

2 User and Document Modeling for Personalized Search

The available information on the Web is usually represented through HTML doc-
uments, or more complex formats, such as images, audio, video, Flash animation,
etc.. These layout-based representations organize and adapt the content to the
reading user by means of the Web browser. For this reason, personalized Web in-
formation systems need to pre-process those formats in order to extract the real
document content, ignoring the layout-related information, e.g., HTML table tags
or fonts. Once the original document content is extracted, ad-hoc representations
are usually employed to organize the information so that the personalization pro-
cess is able to retrieve and filter it according to the user needs.

User knowledge and preference acquisition is another important problem to be
addressed in order to provide effective personalized assistance. Some approaches
exploit user data, that is, information about personal characteristics of the user
(such as age, sex, education, country where he lives) in order to learn the knowl-
edge needed to provide effective assistance. Other approaches analyze the usage
data related to the user’s behavior while interacting with the system.

User data are usually collected following explicit approaches, where the user
constructs the model by describing the information in which he is interested.
Nevertheless, because users typically do not understand how the matching pro-
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cess works, the information they provide is likely to miss the best query keywords,
i.e., the words that identify documents meeting their information needs. Instead
of requiring user needs to be explicitly specified by queries and manually up-
dated by user feedback, an alternative approach to personalize search results is
to develop algorithms that infer those needs implicitly.

Basically, implicit feedback techniques unobtrusively draw usage data by
tracking and monitoring user behavior without an explicit involvement, e.g.,
by means of server access logs or query and browsing histories [25].

Several user modeling approaches are based on simple sets of keywords ex-
tracted from interesting documents or suggested by users. A weight can be as-
signed to each keyword representing its importance in the user profile. Basically,
these approaches are inspired by Information Retrieval approaches , an area of
research that enjoys a long tradition in the modeling and treatment of non-
structured textual documents [4]. Because of the popularity in the Web domain,
Sect. 2.1 briefly discusses this topic.

Further techniques are based on models and methods from AI Knowledge
Representation, such as Semantic Networks, Frames, Latent Semantic Indexing
and Bayesian classifiers. These latter kinds of user models will be discussed in
the following sections.

2.1 IR-Based Modeling

In the Information Retrieval field, a collection’s documents are often represented
by a set of keywords, which can be directly extracted from the document text
or be explicitly indicated in an initial summary drawn up by a specialist. Inde-
pendently of the extraction method, these very keywords provide a logic view of
the document [4].

When collections are particularly bulky, though, even modern processors have
to reduce the set of representative words. This can be done through stemming,
reducing several words to their common grammatical root, or through the iden-
tification of word groups (which removes adjectives, adverbs and verbs).

One of the problems of IR systems is that of predicting which documents are
relevant and which are not; this decision usually depends on the ranking algorithm
used, which tries to put the retrieved documents in order, by measuring similarity.
The documents on top of this list are the ones considered more relevant.

The classic models consider all documents described by a set of representative
keywords, also known as index terms. The Vector Model assigns w weights to
the index terms; these weights are used to calculate the similarity level between
every document stored in the system and the submitted query.

The Vector Model appraises the level of similarity between document dj and
query q, as a correlation between vectors d and q. This correlation can be quan-
tified, for example, as the cosine of the angle between the two vectors:

sim(dj , q) =
dj · q
|dj ||q|

=
∑t

i=1 wijwiq√∑t
i=1 w2

ij

√∑t
j=1 w2

jq
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Term weights can be calculated in many different ways [28,47,4]. The basic
idea of the most efficient techniques is linked to the cluster concept, suggested
by Salton in [9]. In literature it is possible to recognize many prototypes for Web
search based on weighted or Boolean feature vector, e.g., [30,5,24,40,31].

2.2 Latent Semantic Indexing

The complexity of Information Retrieval is to be clearly seen in two main un-
pleasant problems:

- synonymity all the documents containing term B synonym of term A
present in the query are lost, therefore relevant information is not retrieved.

- polysemy occurs when a term has several different meanings; it causes
irrelevant documents to appear in the result lists.

In order to solve such problems, documents are represented through underly-
ing concepts. The concealed structure is not simply a many-to-many mapping
between terms and concepts, but it depends from the body. Latent Semantic
Indexing (LSI) is a technique that tries to get hold of this hidden semantic
structure through the spectral analysis of the terms-documents matrix [15]. It
has been applied in different scopes, for example the simulation of human cogni-
tive phenomena, such as modeling human word sorting and category judgments,
estimating the quality and quantity of knowledge contained in an essay, or how
easily it can be learned by individual students.

The vectors representing the documents are projected into a new subspace
obtained by the Singular Value Decomposition (SVD) of the terms-document
matrix A. This sub-dimension space is generated by the eigenvectors of matrix
AT A corresponding to the highest eigenvalues, thus to the most obvious corre-
lations between terms. A necessary step in implementing LSI in a collection of
n documents is the formation of the terms-documents matrix Am×n, where m
is the number of distinguished terms present in n documents. Each document
is thus represented by an m-dimensional column vector. After having calculated
the frequency of each word in each document, it is possible to implement inter-
cluster and intra-cluster weighting functions.

Matrix A is therefore broken down through SVD, which somehow allows to ob-
tain the semantic structure of the document collection by means of orthogonal
matrices Ur and Vr (containing the single left and right vectors of A, respec-
tively) and the diagonal matrix Σ of the singular values of A. Once matrices
Ur,Vr and Σ are obtained, by extracting the first k < r triple singulars, it is
possible to approximate the original terms-document A matrix with matrix Ak of
rank k:

Ak = Σ−1
k · UT

k · A

By using this formula it is possible to map any two documents with different
origins in the m-dimensional space of all different terms in the same vector of the
reduced space; the set of basic vectors of k−dimensional space accounts for the
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set of concepts or for the different meanings the several documents may have,
therefore a generic document in k−dimensional space can be represented as a
linear combination of concepts or equivalently of the basic vectors of the same
space. We thus passed from a representation in a space with m dimensions (the
dimension is equivalent to the number of terms found in the analysis of all doc-
uments) to a compressed form of the same vectors in k < m dimensional space.
It should be pointed out that through Ak one can deliberately reconstruct, even
though not perfectly, matrix A, since it contains a certain noise level introduced
by the randomness with which terms are chosen to tackle certain discourses or
topics; this noise is “filtered” by annulling the singular, less significant values.

Besides recommender systems [48,44], a generalization of the LSI approach has
been also applied to the click-through data analysis in order to model the users’
information needs by exploiting usage data, such as the submitted query and the
visited results [52]. The evaluation shows that thanks to high order associations
identified by the algorithm, it achieves better accuracy compared with other
approaches although the whole computation is remarkably time-consuming.

2.3 Bayesian Approach

The idea of resorting to Bayesian probabilistic models to represent a document
is undoubtedly very interesting. Indeed, the probability theory provides the re-
quired tools to better cope with uncertainty, while Bayesian formalism enables to
represent the probabilistic relations within a very vast set of relevant variables,
which very efficiently encodes the joint distribution of probability, exploiting
the conditional independence relations existing between the variables [42]. The
Bayesian approach to probability can be extended to the problem of comprehen-
sion: this union leads to an extremely powerful theory, which provides a general
solution to noise problems, overtraining and good predictions.

In order to implement the Bayesian document-modeling technique, it is nec-
essary to decide what features are mostly useful to represent a document, and
thereafter decide how to assess the probability tables associated with the Bay-
esian network. The problem of document representation has a considerable im-
pact on a learning system’s generalization capacity [13,34]. Usually, a document
is a string of characters: it must be converted into a representation that is suit-
able for learning algorithms and classification. Words have been acknowledged
to work well as representation units, whereas their positioning seems to be less
relevant [19]. It is now a matter of deciding the features to describe a document.

The multinomial model is usually employed to assign a representation to a
document based on a set of words, associated with their frequency. The word or-
der is lost, but their frequency is recorded. A simplified model (Bernoulli model)
represents a document as a set of binary features which indicate the presence or
absence of a certain set of words forming the vocabulary.

In the multinomial model, in order to calculate a document probability, the
probabilities of the words appearing in it are multiplied [18]. We illustrate the
procedure that leads to the final representation of a document, highlighting the
hypotheses required to simplify a domain’s description.
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As a first approach, we must define a feature for each position of a word in
the document, and its value is the word in that very position. In order to reduce
the number of parameters, the probability tables associated with the Bayesian
network are considered the same for all features. The independence entailed in
this context asserts that the probability of a word in a certain position does not
depend on the words present in other positions.

In order to further reduce the number of parameters, we can suppose that the
probability of finding a word is independent of its position: this means assuming
that features are independent, and identically distributed. As far the document
model is concerned, the reference is to the multinomial model that represents a
document as a set of words with their frequency number associated to them. In
this representation, the word order is lost, but their frequency is recorded.

Going back to Näıve Bayes, we can say that this twofold document repre-
sentation is a bag of words : a document is seen as a set of words. That’s how
a feature-value representation of the text is done: each word differing from the
others corresponds to a feature whose value is the number of times that word
appears in the document. In order to avoid having sets of words with an ex-
cess cardinality, it is possible to follow a feature selection procedure that aims
at reducing the number of words appearing in the vocabulary. The choice of a
document representation is affected by the domain being analyzed.

Among the various search agents based on the Bayesian approach it is worth
mentioning Syskill & Webert [41]. It can make suggestions about interesting
pages during a browsing session and use the internal user model to query a search
engine in order to retrieve additional resources. The default version of Syskill &
Webert uses a simple Bayesian classifier to determine the document relevance.
Sets of positive/negative examples are used to learn the user profile and keep it
up-to-date. A feature selection phase based on the mutual information analysis
is employed to determine the words to use as features.

Besides the explicit feedback technique that forces users to explicitly construct
the model by describing the information in which he is interested, Syskill &
Webert is able to suggest interesting Web pages. Nevertheless, this decision is
made by analyzing the content of pages, and therefore it requires pages to be
downloaded first.

2.4 Semantic Networks and Frames

Semantic networks consist of concepts linked to other concepts by means of
various kinds of relations. It can be represented as a directed graph consist-
ing of vertices which represent concepts and edges, themselves representing
the semantic relations between the concepts. They were initially studied as a
reasonable view of how semantic information is organized within a human mem-
ory [45].

The SiteIF project [33] uses semantic networks built from the frequencies of
co-occurring keywords. In this approach, keywords are extracted from the pages
in the user’s browsing history. These keywords are mapped into synsets (grouping
English words into sets of synonyms) contained in the WordNet database [37],
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a semantic lexicon for the English language, identifying meanings that are used
as nodes in the semantic network-based profile.

The SiteIF model of the profile is kept up to date by “looking over the user’s
shoulder”, trying to anticipate which documents in the Web repository the user
might find interesting. It builds a representation of the user’s interest by taking
into account some properties of words in documents browsed by the user, such
as their co-occurrence and frequency. This profile is used to provide personalized
browsing, the complementary information seeking activity to search.

A further approach based on a semantic network structure is ifWeb [3], an
intelligent agent capable of supporting the user in the Web surfing, retrieval,
and filtering of documents taking into account specific information needs ex-
pressed by the user with keywords, free-text descriptions, and Web document
examples. The ifWeb system makes use of semantic networks in order to cre-
ate profiles of users. More specifically, the profile is represented as a weighted
semantic network whose nodes correspond to terms found in documents, and
textual descriptions given by the user as positive or negative examples, that is,
through relevance feedback. The arcs of the network link together terms that co-
occurred in some documents. The use of semantic networks and co-occurrence
relationships allows ifWeb to overcome the limitations of simple keyword match-
ing, particularly polysemy, because each node represents a concept and not just
ambiguous keywords.

The relevance feedback technique helps users to explicitly refine their pro-
file, selecting which of the suggested documents satisfy their needs: ifWeb au-
tonomously extracts the information necessary to update the user profile from
the documents on which the user expressed some positive feedback. If some of
the concepts in the user profile have not been reinforced by the relevance feed-
back mechanism over a long period of time, a temporal decay process called rent
lowers the weights associated with these concepts. This mechanism allows the
profile to be maintained so that it always represents the current interests of the
user.

A different AI representation, which organizes knowledge into chunks is called
frames [38]. Within each frame are many kinds of information, e.g., how to use
the frame, expectations, etc.. The frame’s slots are attributes for which fillers
(scalar values, references to other frames or procedures) have to be specified
and/or computed. Collections of frames are to be organized in frame systems,
in which the frames are interconnected. Unlike slots, the frame’s properties are
inherited from superframes to subframes in the frame network according to some
inheritance strategy. The processes working on such frame structures are sup-
posed to match a frame to a specific situation, to use default values to fill un-
specified aspects, and so on.

The Wifs system’s goal is to filter Web documents retrieved by a search engine
in response to a query input by the user [36]. This system re-rank urls returned
by the search engine, taking into account the profile of the user who typed in the
query. The user can provide feedback on the viewed documents, and the system
accordingly uses that feedback to update the user model.
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The user model consists of frame slots that contain terms (topics), each as-
sociated with other terms (co-keywords). This information forms a semantic
network. Slot terms, that is, the topics, must be selected from those contained
in a Terms Data Base (TDB), previously created by experts who select the terms
deemed mostly relevant for the pertinent domain.

Document modeling is not based on traditional IR techniques, such as the
Vector Space Model. The abstract representation of the document may be seen
as a set of active terms, or planets, T1, T2, ..., Tn are the ones contained both in
the document and TDB, whereas the satellite terms t1, t2, ..., tm are the terms
included in the document, but not in the TDB, but which co-occur with Ti’s. It
is evident that the structure is similar to the user model one, but there are no
affinity values between the planets and the satellites. For each of these terms,
however, document occurrence is calculated. The occurrence value of a term t
appearing in a retrieved document is directly proportional to the frequency with
which term t appears in the body, and the frequency with which term t appears
in the document title.

In order to evaluate each document, the system builds a vector
−→
Rel, where the

element Reli represents a relevant value of term ti compared to user information
needs.

Relevance is calculated taking into account the user model, the query, and the
TDB. The relevance value Relnew(t) of term t, which simultaneously belongs to
the document and user model, as a slot topic, is calculated by intensifying the old
relevance value, Relold(t). Basically, the new relevance value of term t is obtained
from the old value, in this case initially equal to 0, as a proportional contribution
to the sum of all semantic network weights of the user model containing term t
as topic.

If the term that belongs to the user model and document, also belongs to the
q query input by the user, then the term relevance value is further strengthened
by means of wslot, the weight associated with topic t. In this way, query q, which
represents the user’s immediate needs, is used to effectively filter the result set
to locate documents of interest.

If term t belongs both to the query q, the document d, and the TDB, but is
not included in the user model, then the only contribution to relevance is given
by the old relevance plus a given constant. Finally, if term t is a topic for the
slotj, all contributions given by co-keywords are considered. This is where the
true semantic network contributes: all the co-keywords K connected to topic t
give a contribution, even if previously unknown to the system, i.e., not currently
belonging to the user model, nor to the TDB, but only to the document.

The system calculates the final relevance score assigned to the document as
follows:

Score(Doc) =
−→
Occ ·

−→
Rel

where
−→
Occ is the vector consisting of elements Occi, that is, the occurrence value

of a term ti, and
−→
Rel is the vector consisting of elements Reli.
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Relevance feedback dynamically updates the user model upon receipt of the
viewed documents provided by the user. The renting mechanism is used to de-
crease the weights of the terms appearing in the model that do not receive
positive feedback after a certain period of time.

It should be pointed out how the semantic network knowledge representa-
tion, and its possibility to store text allowing semantic processing, is an in-
triguing feature in user modeling research, but it is not completely clear how
much of the original model’s formulation has been kept in the developed pro-
totypes. For example, the ifWeb’s semantic network differs from that of the
knowledge representation domain, since it represents terms and not concepts,
and the arcs are not explicit semantic relationships, rather just co-occurrences
in some documents. Nevertheless, the evaluation performance obtained by the
user modeling systems based on this technique in the Web domain is extremely
interesting, in spite of the computational resources for processing the complex
structures.

3 Other Approaches for Personalized Search

In the previous section, we discussed some AI-based techniques in order to model
the user needs and represent the Web documents in information systems. Fur-
ther personalization approaches can be devised in order to improve the current
human-computer interaction with Web search tools. In this section, we discuss
two of these approaches: ontology-based search and adaptive focused crawling.

3.1 Ontology-Based Search

Ontologies and the Semantic Web1 are two important research fields that are
beginning to receive attention in the Web Intelligent Search context. Formal on-
tologies based on logic languages, such as OWL, are able to publish information
in a machine readable format, supporting advanced Web search, software agents
and knowledge management. Dolog et al. [16] are studying mechanisms based on
logical mapping rules and description logics, which allow metadata and ontology
concepts to be mapped to concepts stored in user profiles. This logical charac-
terization enables the formalization of personalization techniques in a common
language, such as FOL, and reasoning over the Semantic Web.

Nevertheless, assigning a unique semantic (meaning) to each piece of informa-
tion on the Web and stating all the possible relationships among the available
data is a difficult task to automate and impossible to perform for a human be-
ing. For this reason, some prototypes are based on hierarchical taxonomies, such
as Yahoo or Open Directory Project (ODP)2 directories. In these kinds
of ontologies, the objects are simply categories that contain references to Web
documents, and their interrelationships allow making inferences and retrieving
more relevant information than the IR keyword-based search.
1 ttp://www.w3.org/2001/sw/
2 http://www.dmoz.org
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The goal is to create ontology-based user profiles and use these profiles to
personalize the human-computer interaction with the Web, during a browsing
session or when the user analyzes the search engine results.

The misearch system [51] improves search accuracy re-ranking the results
obtained by an traditional search service by giving more importance to the doc-
uments related to topics contained in the query histories and/or examined search
results. The user profiles are represented as weighted concept hierarchies. The
Open Directory Project is used as the reference concept hierarchy for the
profiles.

The system collects for each user two different types of data collected by means
of a wrapper of the search engine: the submitted queries, and the snippets of the
results selected by the user. The approach is based on a classifier trained on
the Open Directory Project’s hierarchy, which chooses the concepts most
related to the collected information, assigning higher weights to them.

Fig. 1. The misearch’s user profile based on the ODP directory, where the categories
are weighted according to what the user has seen in the past

A matching function calculates the degree of similarity between each of the
concepts associated with result snippet j and the user profile i:

sim(useri, docj) =
N∑

k=1

wpi,k · wdj,k (1)

where wpi,k is the weight of the concept k in the user profile i, wdj,k is the
weight of the concept k in the document j, and N is the number of concepts.

Finally, each document is assigned a weight, used for result re-ranking. The
results that match the user’s interests are placed higher in the list. These new
ranks are drawn combining the previous degree of similarity with Google’s
original rank.

As for the performance measured in terms of the rank of the user-selected
result, it improves by 33%. A user profile built from snippets of 30 user-selected
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results showed an improvement by 34%. Therefore, even though the text a user
provides to the search engine is quite short, it is enough to provide more accurate,
personalized results, and the implicit feedback reduces the time users need to
spend to learn and keep their profiles up-to-date.

A similar approach is taken by Liu and Yu [32], where user profiles are built
by analyzing the search history, both queries and selected result documents,
comparing them to the first 3 levels of the ODP category hierarchy.

Because queries are usually very short, they are often ambiguous. For each
query and the current context, the system assigns the most appropriate ODP
categories. Afterwards, the system performs query expansion based on the top-
matching category reducing the ambiguity of the results.

The categories in the user profile are represented by a weighted term vector,
where a highly-weighted keyword indicates a high degree of association between
that keyword and the category. The system updates the user profile after a query,
when the user clicks on a document.

3.2 Adaptive Focused Crawling

Adaptive Focused crawling concerns the development of particular crawlers, that
is, a software system that traverses the Web collecting HTML pages or other
kinds of resources [43,53], able to find out and collect only Web pages that satisfy
some specific topics [12]. This kind of crawler is able to build specialized/focused
collections of documents reducing the computational resources needed to store
them. Specialized search engines use those collections to retrieve valuable, most
reliable and up-to-date documents related to the given topics. Vertical portals,
personalized electronic newspapers [6], personal shopping agents [17] or confer-
ence monitoring services [26] are examples of implementations of those kinds of
search engines in realistic scenarios.

New techniques to represent Web pages, such as the ones discussed in Sect. 2,
and match these representations against the user’s queries, such as algorithms
based on Natural Language Processing (NLP), usually avoided due to the com-
putational resources needed to run them, can be implemented owing to the
reduced dimension of the document sets under consideration.

In this section, we discuss two recent approaches proposed in order to build
focused crawlers based on sets of autonomous agents that wander the Web envi-
ronment looking for interesting resources. The first approach is InfoSpiders [35]
based on genetic algorithms where an evolving population of intelligent agents
browses the Web driven by user queries. Each agent is able to draw the relevance
of a resource with a given query and reason autonomously about future actions
regarding the next pages to download and analyze. The goal is to mimic the
intelligent browsing behavior of human users with little or no interaction among
agents.

The agent’s genotype consists of set of chromosomes, which determines its
searching behavior. This very genotype is involved in the offspring generation
process. The two principal components of the genotype are a set of keywords
initialized with the query terms and a vector of real-valued weights, initialized
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randomly with uniform distribution, corresponding with the information stored
in a feed-forward neural network. This network is used to judge what keywords
in the first set best discriminate the documents relevant to the user. For each
link to visit, the related text that is also included in the genotype set is extracted
by the agent. The text is given as input to the neural network. The output of the
net is used to draw a probability to choose and visit the given link. The outcome
of the agent’s behavior, as well as the user feedback, are used to train the neural
network’s weights. If any error occurs due to the agent’s action selection, that
is, visiting of irrelevant pages, the network’s weights are updated through the
backpropagation of error.

Mutations and crossovers among agents provide the second kind of adaptivity
to the environment. Offspring are recombined by means of the crossover opera-
tion and, along with the mutation operator, they provide the needed variation
to create agents that are able to behave better in the environment, retrieving an
increased number of relevant resources.

A value corresponding to the agent’s energy is assigned at the beginning of the
search, and it is updated according to the relevance of the pages visited by that
agent. The neural networks and the genetic operators aim at selecting the words
that well describe the document that led to the energy increase, modifying the
agents’ behavior according to prior experience, learning to predict the best links
to follow. The energy determines which agents are selected for reproduction and
the ones to be killed amidst the population.

Ant foraging behavior research inspired a different approach for building fo-
cused crawlers. In [20,21] an adaptive and scalable Web search system is de-
scribed, based on a multi-agent reactive architecture, derived from a model of
social insect collective behavior [7].

Biologists and ethologists created this model to understand how blind animals,
such as ants, are able to find out the shortest ways from their nest to the feeding
sources and back. This phenomenon can be easily explained, since ants can
release pheromone, a hormonal substance to mark the ground. In this way, they
can leave a trail along the followed path. This pheromone allows other ants to
follow the trails on the covered paths, reinforcing the released substance with
their own.

The first ants returning to their nest from the feeding sources are those which
chose the shortest paths. The back-and-forth trip (from the nest to the source
and back) allows them to release pheromone on the path twice. The following
ants leaving the nest are attracted by this chemical substance, therefore are more
likely choose the one which has been frequently covered by the previous ants.
For this reason, they will direct themselves towards the shortest paths.

In the proposed focused crawling algorithm each agent corresponds to a virtual
ant that has the chance to move from the hypertextual resource where it is
currently located to another, if there is a link between them. A sequence of
links, i.e., pairs of urls, represents a possible agent’s route where, at the end
of each exploration, the pheromone trail could be released on. The available
information for an agent when it is located in a certain resource is: the matching
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result of the resource with the user needs, e.g., query, and the amount of the
pheromone on the paths corresponding to the outgoing links.

The ants employ the pheromone trail to communicate the exploration results
one another: the more interesting are the resources an ant is able to find out, the
more pheromone trail it leaves on the followed path. As long as a path carries
relevant resources, the corresponding trail will be reinforced, thus increasing the
number of attracted ants.

Fig. 2. Starting from a initial URL set, the agents look for interesting pages on the
Web. If an ant finds a good page, a trail is left on the path. In this way, during the
next cycles other ants will be attracted by the paths that head to good pages.

The crawling process is organized in cycles; in each one of them, the ants make
a sequence of moves among the hypertextual resources. The maximum number
of allowable moves varies proportionally according to the value of the current
cycle. At the end of a cycle, the ants update the pheromone intensity values of
the followed path.

The resources from which the exploration starts can be collected from the first
results of a search engine, or the user’s bookmarks, and correspond to the seed
URLs. To select a particular link to follow, a generic ant located on the resource
urli at the cycle t, draws the transition probability value Pij(t) for every link
contained in urli that connects urli to urlj . The Pij(t) is considered by the
formula:

Pij(t) =
τij(t)∑

l:(i,l)∈E τil(t)
(2)

where τij(t) corresponds to the pheromone trail between urli and urlj , and
(i, l) ∈ E indicates the presence of a link from urli to urll.

At the end of a cycle, when the limit of moves per cycle is reached, the trail
updating process is performed. The updating rule for the pheromone variation of
the k-ant corresponds to the mean of the visited resource scores:
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Δτ (k) =

∑|p(k)|
j=1 score(p(k)[j])

|p(k)| (3)

where p(k) is the ordered set of pages visited by the k-ant, p(k)[i] is the i-th
element of p(k), and score(p) is the function that, for each page p, returns the
similarity measure with the current information needs: a [0, 1] value, where 1 is
the highest similarity.

Afterworlds, the τ values are updated. The τij trail of the generic path from
urli to urlj at the cycle t+1 is affected by the ant’s pheromone updating process,
through the computed Δτ (k) values:

τij(t + 1) = ρ · τij(t) +
M∑

k=1

Δτ (k) (4)

ρ is the trail evaporation coefficient that avoids unlimited accumulation of sub-
stance caused by the repeated positive feedback. The summation widens to a
subset of the N ants living in the environment.

Two empirical observations are included in the developed architecture: Web
pages on a given topic are more likely to link to those on the same topic [14],
and Web pages’ contents are often not self-contained [39].

The Ant crawler has two forms of adaptivity: the first concerns the query
refinement during the execution when the results are not so satisfactory or, in
general, the user does not know how to look for a query able to express what he
wants. The second form regards the environment instability due to the updates
of Web pages. These two types of adaptivity are possible because the value of the
pheromone intensities τij(t) is updated at every cycle, according to the visited
resource scores.

Besides Genetic algorithms and the Ant paradigm, further focused crawlers
are based on AI techniques and approaches, such as reinforcement learning
[46,11] or Bayesian statistical models [1].

4 Conclusions

Through the use of intelligent search, in particular techniques to represent user
needs and Web documents, tailoring search engines’ results, it is possible to
enhance the human-computer interaction that provides useful information to
the user.

AI-based knowledge representations prove their effectiveness in this context,
outperforming the traditional and widespread IR approach. Moreover, ontologies
can be employed to better understand and represent user needs, and intelligent
search methods have been included in autonomous crawlers in order to retrieve
up-to-date resources regarding particular topics.

Further techniques not mentioned in this chapter; nevertheless, Plan recog-
nition (see for example [10]) and NLP are related to this context. The former
attempts to recognize patterns in user behavior, analyzing aspects of their past



Intelligent Search on the Internet 261

behavior, in order to predict goals and their forthcoming actions. Language pro-
cessing aims at understanding the meaning of Web content. How it relates to a
user query can fuel the fire of further important research in the personalization
domain.
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Abstract. Crosswords is over 90 years old, yet it is still one of the most
popular puzzles around the world. It is in fact a linguistic game which
requires a wide knowledge in different domains and the ability to crack
enigmatic clues, that are often regarded as inherent human capabilities.
Unlike chess, crossword solving does not require strong skills for the
actuation of strategic plans, but the linguistic specifications is in itself a
source of enormous difficulty for machines.

This paper discusses the problem of automatic crossword solving with
special emphasis to the WebCrow project carried out at the University of
Siena. After a brief historical description of the evolution of crosswords,
the paper gives a formalization of the main problems to be faced and
provides a number of relevant architectural issues behind cracking cross-
words. In particular, it is claimed that the Web is likely to be the most
important source for the development of challenging programs based on
clue answering, a sort of question answering mechanism in which the
machine is expected to return candidate word solutions.

1 Introduction

Crossword is an extremely popular word game evolved from a long line of word
games. The evidence of crossword-like word play dates from the first century
A.D. with the word square cryptic game (see Fig. 1), which was found carved in
stone on the wall of a building in Pompeii. This particular square, which can be
read four ways (left to right, right to left, top to bottom, and bottom to top),
is often translated as ”Arepo, the sower, watches over his works.” The actual
significance is not completely understood yet. Another early word square is the
Moschion stele, dated around A.D. 300. In the stele, Moschion is honoring Osiris
- Egyptian god of the underworld - with this monument, which, again, contains
words that one can read in different directions. In the mid-1800’s, the clue was
introduced but with the definitions had not the modern sense, yet. In 1875, St.
Nicholas magazine ran a puzzle with a small grid; for the first time, the across
and the down were different, so getting close to nowadays crosswords. However,
the truly nature of the popular puzzle only emerged years later when Arthur
Wynne, a British journalist based in Liverpool, published the first crosswords
on Sunday the 21th of December, 1913 in the New York World. It had a nice
diamond-like structure with across and down clues to define the words; one of
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Fig. 1. The enigmatic rotas square. Amongst many interpretation, the “Pater Noster
anagram is one of the most popular.

them was filled out to make it clear how to solve the puzzle (see Fig. 2). Not
surprisingly, that word was fun!

1.1 Motivations and Relevant Literature

Crosswords is probably the most played language puzzle wordwide and provides
a very challenging game for human intelligence. La Settimana Enigmistica, the
main Italian crossword magazine, sells over one million copies weekly. It is esti-
mated that over 50 million Americans solve crosswords1 with frequency.

Problems like solving crosswords from clues are reputed as AI-complete [7].
This enormous complexity is due to its semantics and the large amount of en-
cyclopaedic knowledge required. The interest in cracking crosswords in the field
of artificial intelligence started developing only recently. The first experience
reported in the literature is the Proverb system [5] that reached human-like per-
formances on American crosswords using a great number of knowledge-specific
expert modules and a crossword database of great dimensions2.

The recent developments in searching the Web are offering new opportunities
to machines to enfold with semantics real-life concepts. That was the motivation
for launching the WebCrow project at the University of Siena, where crosswords
are attacked (within competition time limits) making use of the Web as its
primary source of knowledge. This represents a different approach with respect
to Proverb, because WebCrow does not possess any knowledge-specific expert
1 It has been recently observed that this sort of activity helps to prevent from devel-

oping mental decline
2 Before Proverb, AI limited its analysis to the crossword generation problem [3]. This

makes a closed-world assumption by requiring a predefined dictionary of legal words
and results to be an NP-complete task that can be solved in a few seconds.



Cracking Crosswords: The Computer Challenge 267

Fig. 2. The first crosswords was created by British journalist Arthur Wynne and ap-
peared in Sunday newspaper New York World, on December 21, 1913

module. Nevertheless, in order to assure the system rubustness to all sorts of
clues, WebCrow makes also use of a strict set of other useful modules, which
includes a dictianary and a small CrossWord DataBase3 (CWDB). The web-

3 The database used by Proverb was about one order of magnitude greater than ours.
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based clue-answering paradigm aspires to stress the generality of WebCrow’s
knowledge and its language-independency. We will show in this paper that Web
Search, thanks to the fact that in clue-answering we priorly know the exact
length of the correct answer, can produce extremely effective results providing
the most important source of knowledge for the clue-answering process.

1.2 Problem Setting and Results

Italian crosswords tend to be extremely difficult to handle because they contain
a great quantity of word plays, neologisms, compound words, ambiguities and a
deep involvement in socio-cultural and political topics, often treated with irony.
The latter is a phenomenon, especially present in newspapers, that introduces
an additional degree of complexity in crossword solving since it requires the
possession of a very broad and fresh knowledge that is also robust to volunteer
language vagueness and ambiguity.

We have collected 685 examples of solved Italian crosswords, each one con-
taining an average of 62.7 clues. These examples were mainly obtained from two
sources: the main Italian crossword magazine La Settimana Enigmistica (due to
its popularity and history, this publisher sets a probable standard for Italian
crosswords) and an important on-line newspaper’s crossword section, La Re-
pubblica. Other examples were downloaded from crossword-dedicated web sites.
Sixty crosswords (3685 clues, avg. 61.4 each) were randomly extracted from these
subsets in order to form the experimental test suite. The remaining crosswords
constituted a database (CWDB) of clue-target pairs that was used as an aid for
the generation of the candidate-answer lists.

Given this test set WebCrow’s challenge was to answer all the clues and to
subsequently fill the slots with the highest percentage of correct words. As in
many human competitions a 15 minutes time limit was given for each example.

The version of WebCrow that is discussed here is basic but it has already given
very promising results. In over two thirds of the clues the correct answer was found
by the Web Search Module whithin the downloaded documents and in some cases
(nearly 15%) this answer was the most probable (i.e., appearing a the top of the
list). The addition of the other modules has raised the coverage to 99% and the
probability of having the targeted word in first position to over 35%. Finally, solv-
ing the Constraint Satisfaction problem by filling the crossword puzzle, WebCrow
averaged on the overall test set around 70% words correct and 80% letters correct.
On the examples that experts consider “easy”, as the examples fromthe cover pages
ofLaSettimanaEnigmistica,WebCrowperformedwith 80,0%words correct (100%
in one case) and 90.1% letters correct. On more difficult examples the percentage
of correct words was steadily above 60%: 67,6% with la La Settimana Enigmistica
(81% letters) and 62.9% with La Repubblica (73% letters).

2 The System Architecture

WebCrow is a modular-based system. Therefore, it is also possible to plug in
additional ad hoc modules in order to increase the system’s performances. A
sketch of WebCrow’s architecture is given in figure 3.
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Fig. 3. WebCrow. A general overview of WebCrow’s architecture, which was inspired
by Proverb’s.

The WebCrow solving process can be devided in two phases. During the first
one, all the clues of a puzzle are passed by the coordinator to all the “List Gen-
erator” modules. Each of them returns for each clue a list of possible solutions.
All lists are then merged by the “Merger”, using the confidence values of each
list and the probabilities associated to each candidate of a list. At the end of
this phase, a unique list of candidate-probality pairs is generated for each clue.
Finally, WebCrow has to face a constrain-satisfaction problem. From each clue
list a candidate has to be chosen and inserted in the crossword-puzzle, trying
to satisfy the intrinsic constrains. The aim of this phase is to find an admissible
solution which maximize the number of correct words inserted.

3 Using the Web for Clue-Answering: The Web Search
Module

The objective of the Web Search Module (WSM) is to find sensible answers
to crossword clues, that are expressed in natural language, by exploting the
Web and search engines (SE). This task recalls that of a Web-based Question
Answering system. However, with crossword clues, the nature of the problem
changes sensibly, often becoming more challenging than classic QA4. The main
differences are:
4 The main reference for standard QA is the TREC competition [16].



270 M. Gori, M. Ernandes, and G. Angelini

- Query 
riformulation
- Documents 
retrieval with SE
- Documents 
download

STATISTICAL 

FILTERING

MORPHOLOGICAL 

FILTERING
M
E
R
G
E
R
 

C
O
N
F
I
D
E
N
C
E

CANDIDATE

EXTRACTION

PARSER

TEXT EXTRACTION

E
S
T
I
M
A
T
O
R

Retrieval 

Filtering 

Clue

List

ListText Docs

Web Docs

Clue

Web Search Module

List

Fig. 4. Web Search Module. A sketch of the internal architecture of the Web Search
Module.

– clues are mostly formulated in a non-interrogative form (i.e: ≺La voce narrante del
Nome della Rosa: adso�5) making the task of determining the answer-type more
subtle.

– clues can be voluntarily ambiguous and misleading (i.e: ≺Quello liquido non at-
tacca: scotch�6)

– the topic of the questions can be both factoid7 and non-factoid (i.e: ≺Ci si va al
buio: cinema�8)

– there is a unique and precise correct answer: a single word or a compound word (i.e.
≺Ha cambiato il linguaggio della tv: ilgrandefratello�9), whereas in QA the an-
swers are usually a 50/250-byte-passage in which the target has to be recognizable
by humans.

– the list of candidate answers requires also a global confidence score, expressing the
probability that the target is within the list.

The only evident advantage in crossword solving is that we priorly know
the exact length of the words that we are seeking. We believe that, thanks to
this property, web search can be extremely effective and produce a strong clue-
answering.

The inner architecture of the WSM is sketched in figure 4. There are four
task that have to be accomplished by the WSM: the retrieval of useful web
documents, the extraction of the answer candidates from these documents, the
scoring/filtering of the candidate lists and, finally, the estimation of the list
confidence. In this section all these components will be presented and analyzed.

Despite the fact that the WSM has been implemented only in a basic ver-
sion, it is clear that this module, among the set of expert modules used by We-
bCrow, produces the most impressive answering performances, with the best cov-
erage/precision balance. This is evident if we observe tab. 1 (first two columns).
In over half of cases the correct answer is found within the first 100 candidates
inside a list containing more than 105 words.
5 ≺The background narrator of the Name of the Rose: adso�
6 ≺The liquid one does not stick: scotch�, the clue ambiguously refers to the two

senses of the target: scotch-whisky and scotch-tape.
7 As TREC questions, like Who was the first American in space?
8 ≺We go there in the darkness: cinema�
9 ≺It changed the language used in television: thebigbrother�
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Table 1. Module’s coverage (cvr). 1-pos gives the freq. of the target in first
position, 5-pos the freq. within the first five candidates, 100-pos within the first
hundred. Len is the avg. list length. The number of documents used the WSM is
reported in brackets. Test Set: 60 crosswords (3685 clues).

Module cvr 1-pos 5-pos 100-pos Length
WEB (30 docs) 68.1 13.5 23.7 53.2 499
WEB (50 docs) 71.7 13.6 24.0 54.1 735
CWDB-EXACT 19.8 19.6 19.8 19.8 1.1
CWDB-
PARTIAL

29.0 10.6 20.1 28.4 45.5

CWDB-DICTIO 71.1 0.4 2.1 21.5 >103

RULE-BASED 10.1 6.9 8.3 10.1 12.4
DICTIONARY 97.5 0.3 1.6 21.3 >104

ALL BUT WEB 98.4 34.0 43.6 52.3 >104

ALL (30 docs) 99.3 36.5 50.4 72.1 >104

ALL (50 docs) 99.4 36.6 52.2 73.0 >104

Fig. 5. Target in first position. The
frequency of the target in first position
in relation to its length with and with-
out the WSM.

Fig. 6. Target in first 100 posi-
tions. The frequency of the target in
the first 100 positions in relation to its
length with and without the WSM.

The contribution of the WSM can be appreciated in the last three rows of
tab. 1 where we can observe the loss of performance of the whole system when the
WSM is removed. The overall coverage of the system is mainly guaranteed by the
dictionary module (sec. 4.4), but the introduction of the WSM is fundamental
to increase sensibly the rank of the correct answer. Also interesting is fig. 5 and
fig. 6 where we take into consideration the length of the target. It can easily be
observed that the WSM guarantees the system to well perform even with long
word targets, which are of great importance in the CSP phase.

As it can be seen in table 2 the coverage of the WSM’s lists grows sensibly
with the first increments in the number of retrieved documents. This growth is
imperceptible after 100 docs. We found that optimal balance in the trade off
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between precision, coverage and time cost is reached using 30 docs. We took this
as the standard quantity of sources to be used in the experiments because it
allows WebCrow to fulfill the time limit of 15 minutes.

Table 3 gives an insight of the quality of WSM’s answers. Several examples of
clues are reported along with a small portion of the correspondent candidate list.

3.1 Retrieving Useful Documents

The first goal of the answering process is to retrieve the documents that are
better related to the clue. This can be done thanks to the fundamental con-
tribution of search engine’s technology (GoogleTM was used in our testing). In
order to increase the informativeness of the search engine the clues go through
a reformulation/expansion step. Each clue C = {t1t2...tn} generates a max-
imum of 3 queries: Q1 =< t1 ∧ t2 ∧ ...tn >, Q2 =< t1 ∨ t2 ∨ ...tn > and
Q3 =< (t11 ∨ t21 ∨ ...) ∧ (t12 ∨ t22 ∨ ...) ∧ ...(t1n ∨ t2n ∨ ...) > where tin is the i-th
derivation (i.e. changing the number, the gender, ...) of term tn. Q3 has not
been implemented yet. Non informative words are removed from the queries.

A classic QA approach is to make use only of the document snippets in order
to stress time efficiency. Unfortunately the properties of the clues make this
approach useless (the probability of finding the correct answer to a crossword
clue within a snippet has been experimentally observed below 10%) and we
decided for a full-document approach.

The interrogation of the search engine and the download the documents rep-
resent two tasks that are extremely time consuming, absorbing easily over 90%
of time in the entire clue-answering process. Therefore we have implemented it
in a highly parallel manner: the WSM simultaneously downloads tens of doc-
uments (for one or more clues at a time) adopting a strict time-out for each
http request (20 secs.). If a request reaches the time-out then the WSM asks the
search engine for a cached copy of the document. If this is unavailable then the
document is declared missed and an additional link is requested to the SE.

Table 2. WSM’s performance. The performances of the WSM are here re-
ported. The number of documents used is reported in brackets. SF=statistical filter,
MF=morphological filter. Time is reported in min:secs. *The growth of the coverage
is due the NI submodule.

#docs + fil-
ters

Cover 1-pos 5-pos 100-pos Time

5+SF 46.4 11.1 19.1 41.7 1:25
10+SF 56.2 12.2 21.6 47.5 2:45
20+SF 63.7 12.3 22.1 50.3 5:30
30+SF 67.9 12.3 22.2 52.3 8:10
50+SF 71.6 12.2 22.0 53.4 13:30
100+SF 74.5 11.9 21.5 53.2 26:50
30+SF+MF 68.1* 13.5 23.7 53.2 8:45
50+SF+MF 71.7* 13.6 24.0 54.1 14:15
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Table 3. Some examples. On the left: some examples of clues that are “easy” to
answer for the WSM. The correct answer is present in the very first candidates. The
easiest examples are usually the clues where the topic is directly addressed and where
the answer is a factoid. On the write there is a list of “tough” clues. These are tipically
very general or ambiguous and the WSM fails to place the correct answer at the head of
the list. Nevertheless, all the answers that the system produces tend to be semantically
related to the target and to the clue.

“Easy” clues “Tough” clues
≺Confina con l’Abruzzo: molise� ≺Caratteristica del burlone: giocosita�
1:molise 2:aquila 3:marche 4:umbria 1:simpatica 2:sicurezza 3:compagnia
≺Il von Klein scrittore: heinrich� ≺Documenti per minorenni: patentini�
1:heinrich 2:giovanni 3:kohlhaas 1:necessari 2:richiesti 3:organismi
≺Atomi elettrizzati: ioni� ≺Il verbo di chi ha coraggio: lanciarsi�
1:ioni 2:poli 3:essi 4:sali 5: rame 1:interiore 2:predicato 3:idealismo
≺Mal d’orecchi: otite� ≺Lasciare un segno: intaccare�
1:otite 2:ictus 3:otiti 4:edemi 5:gocce 1:passaggio 2:possibile 3:segnalare
≺Lo parlano anche in Austria: tedesco� ≺Non ha gusto in bocca: insapore�
1:inglese 2:tedesco 3:milione 4:skiroll 1:dialetto 2:prodotto 3:zucchero
≺Un film di Nanni Moretti: carodiario� ≺Larga e comoda: ampia�
1:palombella 2:portaborse 3:carodiario 1:bella 2:sella 3:barca 4:scala 5:valle
≺Il piú famoso dei Keaton: buster� ≺Sembrano ridere: iene�
1:comico 2:cinema 3:grande 4:buster 1:anni 2:loro 3:rane 4:rami 5:voci
≺Il Giuseppe pittore di Barletta: denittis� ≺Una sciagura attraente: calamita�
1:leontine 2:molfetta 3:ritratto 4:denittis 1:passione 2:alcolico 3:fardello

For each example of our test suite we have produced a full retrieval session
with a maximum of 200 docs per clue (max. 30 docs with Q2). 615589 docs were
downloaded in 44h 36min (bandwith: 1Mb/s, effective ≈100KB/sec, avg. 230
docs/min, 167 docs/clue, 25.6KB/doc). All the test sessions were subsequently
made offline exploiting this web image.

3.2 Extracting and Ranking the Candidates

The process of generating a list of candidate answers given a collection of rel-
evant documents goes through two important steps. First, the documents are
analyzed by a parser which produces as output plain ASCII text10. Second, this
text is passed to a list generator that extracts the words of the correct length,
eliminates doubles and produces an unweighted candidate list. In order to in-
crease the coverage, a list of conpound words (i.e., a sequence of adjacent words
fullfilling the lenght requirement) is generated from each document. To avoid
noisy information, compound words which occurs only once are ommited.

Both outputs are then passed to two submodules: a statistical filter, based on
IR techniques, and a morphological filter, based on machine learning and NLP
techniques. Both have been embedded in the WSM.
10 Currenly, the parser handles only HTML scripts. We are planning to implement a

PDF parser in the next future.
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The candidates are ranked by merging together the information provided by
the two list filters. The score-probability associated to each word candidate w is
given by

p(w, C) = c (sf -score(w, C) ×mf -score(w, C)) (1)

where sf -score(w, C) is the score attributed to word w by the statistical fil-
ter, mf -score(w, C) is the score provided by the morphological filter, c is the
normalizing factor that fulfills the probability requirement

∑n
i=0 p(wn, C) = 1.

In QA systems it is important to produce very high precision only in the very
first (3-5) answer candidates, since a human user will not look further down
in the list. For this reason NLP techniques are typically used to remove those
answers that are not likely correct. This answer selection policy is not well suited
for clue-answering, a more conservative approach is required because the lack of
the correct answer makes a greater damage than a low precision. The eq. 1 serves
this goal: words that have low scores will appear at the bottom of the list but
will not be dropped.

Our future objective is to implement a full battery of filters that can be added
to the two already implement: stylistic, morpho-syntactical, lexical and logical.
We believe that a robust NLP system could be of great impact in the answering
of the clues. In addition to this we are designing a clue classifier that will enable
WebCrow’s module coordinator to understand when the web search can really
be fruitfull and when, conversely, this should not be triggered.

3.3 The Statistical Filtering

This submodule makes use of three types of information: a query (generated
by the reformulation of a clue), a collection of ranked documents (parsed and
cleaned) provided by the search engine and a list of candidate answers extracted
from the documents. We represent this information with the triple (w, Qn, Di)
where w is a word of the correct length, Qn (n-th reformulation of clue C) is
the query that is given as input to the SE and Di is the i-th document (con-
taining word w) provided as output by the SE. An additional element is used,
rank(Di, Q

n): the document ranking. To obtain this score we use the position
of Di in the Google’s output and then compute log(1/pos(Di)). It has to be
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DOCUMENT
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Fig. 7. Statistical Filter. A sketch of the internal architecture of the Statistical Filter.
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noted that i does not strictly correspond to pos(Di) because whenever a doc-
ument is missed for some reasons (non parsable format, http errors, etc.), the
systems looks further down in the list in order to maintain constant the quantity
of usable documents.

Finally, we attribute a global score to each word extracted from the documents
in the following way:

sf -score(w, Qn) =
#docs∑

i=0

(
score(w, Qn, Di)

length(Di)
rank(Di, Q

n)
)

(2)

where length(Di) is the number of words in Di. The score of a word within
a single document is computed in a TF-IDF fashion. TF has been modified in
order to take into account the inner-document distance between the word and
the query. As shown in eq. 3, each occurrence of a word counts 1/dist(w, Q, Di),
whereas in normal TF each occurrence counts equally.

score(w, Q, Di) = idf(w)
∑

occ(w)∈Di

1
dist(w, Q, Di)

(3)

idf(w) is the classic inverse document frequency, which provides an immediate
interpretation of term specificity. For compound words we take the highest idf
value of the word components. occ(w) ∈ Di represents all the occurrences of
the word w in the document Di. The distance between word w and query Q
is computed as a modified version of the square-root-mean distance between w
and each term wQt of the query, suggested by [6]. The main bias of the original
formula was to weight equally all the words of the query without taking into
account that some words are more informative than others. As shown in eq. 4,
we decided to overcome this problem by tuning the exponential factor of the
square-root-mean distance using the idf value of wQt (normalized between 1
and 3). This increases the relevance of those answer candidates that are close to
the more informative terms in the query. This novel contribution has resulted
experimentally more effective for our goals.

dist(w, Q, Di) =

√∑#terms ∈ Q
t=0 (dist(w, wQt , Di))

idf(wQt )

#terms ∈ Q
(4)

dist(w, wQt , Di) denotes the distance between word w and word wQt in document
Di. In our implementation the distance between two words, whithin a single
document, is given by the minimum number of words that separate them. After
a preliminary testing we decided to limit to 150 words the maximum word-word
distance. A default distance of 300 is assigned to those words that exceed this
limit. It is legitimate to believe that outside a certain window the semantic link
between two words is unpredictable.

This distance metric could be furtherly improved (i.e. taking into account
sentences, paragraphs, titles, punctuations, etc.) but it already provides a very
informative tool.
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Fig. 8. Filtering perfomance. Probability of finding the correct answer as a function
of the number of candidates that are taken into account. Looking further down in the
candidate list, the probability of retrieving the target answer increases.

Other improvements could be obtained using a crossword-focused idf function
(the idf values used here were obtained through a non-focused crawling session)
or making use of the context in which each candidate appears. Figure 8 shows
the contribution of all the elements used within the statistical filter. In a non
ranked list the probability of finding the correct answer increases linearly with
the number of candidates taken into consideration. If we rank the candidates
for their TF value the probability increases for those words that are better
placed in the list. It is easy to observe in figure 8 how the performances increase
shifting from a basic filter to the full one which includes both the stastistical
and morphological information.

3.4 The Morphological Filtering

The aim of this filter is to rank the candidates according to the morphological class
they belong to. For this reason we made use of aPart-of-Speech (PoS) tagger, which
associates a morphological class to each word of a sentence. Figure 9 shows the
information flow of the morphological filter. The PoS tagger is used to tagged both
the clue and each document related to it. Afterwards, the clue is processed by a
multiclass classifier, which returns a weighted vector of the possible morphological
classes the solution can belong to. Finally, for each word of the candidate list its
morphological score is calculated by:

mf -score(w, C) =
#tags∑

i=0

p(tagi|w)score(tagi, C) (5)
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Fig. 9. Morphological Filter. A sketch of the internal architecture of the Morpho-
logical Filter.

p(tagi|w) is the information provided by the PoS-Tagger, score(tagi, C) is com-
puted using the output of the classifier with the addition of a spread factor in
order to enhance the impact of the classification.

With the attempt to maintain a strong language-independency we choosed
an automatic trainable PoS tagger, called TreeTagger [12] [13], which is an
extension of a basic Markov Model tagger. The TreeTager is based on two parts:
a Lexicon and a Decision tree. Each word is first tagged using the Lexicon,
which makes use also of a Prefix tree and a Suffix tree. This two trees are binary
decision trees, generated by the training examples, which infer the possible tag
of a word by examining, respectevly, its beginning or ending. Finally, a binary
decision tree is used. This takes into account the tags of the k preceding words
and returnes a vector of the probable tags, based on the examples seen in the
training corpus. We used 23 different classes to distinguish: articles, nouns and
adjectives, verbs, adverbs, particles, interlocutory words, numbers, punctuation
marks, abbreviations and others. A detailed list is given in table 4. At first, the
TreeTagger was trained using an automatically extracted corpus form TUT [1].
The tagger was then used to tag a new corpus based on some CWDB’s clues
and documents from the web. This new corpus was corrected and added to the
first one. Finally, the TreeTagger was retrained, obtaining an accurancy of about
93% on a cross validation test set.

The clue classifier was built using multiclass Kernel-based Vector Machine
[15] [2]. First, a training set was created by extracting about 7000 clue-target
pairs from the CWDB. Each clue was tagged by the TreeTagger and a feature
vector x̄ ∈ Rn was then automatically generated for each example. The features
extracted from each clue-answer pair were: the length of the target, the number
of words in the clue, the number of capital letters in the clue, a set of the 250
most frequent clue-words and the probability tag vector accociated to each word
of the clue. Finally, a target class i ∈ {1, . . . , k} was accociated to each example.
We made use of 21 different target classes: almost all the morphological ones
with the addition of name intials (IP) and non-semantic words (NS). A detailed
list is shown in table 6.
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Table 4. Morphological classes. This is the full list of the morphological classes
used in our PoS Tagger. It differes from usual PoS tagging lists as the choise was to
stress information relevant for finding the solution of a clue.

class description class description
MS Noun or Adj. or Pron., masc. sing. AFP Article, feminine plural
FS Noun or Adj. or Pron., fem. sing. AV Adverb
MP Noun or Adj. or Pron., masc. pl. PART Particle
FP Noun or Adj. or Pron., fem. pl. NUM Number
NP Proper Noun EP Interlocutory words
VS Verb, cong. singular ABBR Abbreviation
VP Verb, cong. plural PC Compound Words
VI Verb, base form SCRIPT Script words in html doc.
VOTHER Verb, other SENT2 Punctuation, all the others
AMS Article, masculine singular SENT Punctuation a the end
AFS Article, feminine singular of a sentence
AMP Article, masculine plural OTHER all the rest

Our classifier is based on a multiclass Kernel-based Vector Machine, whose
aim is to learn a linear function H : X → Y of the type H(x̄, M) = 〈M, Φ(x̄)〉,
where the predicted class is given by the function

f(x̄) = argmax
i∈{1,...,k}

Hi(x̄, M) (6)

Hi(x̄, M) = yi is the i-th entry of the vector ȳ = H(x̄, M), corresponding to the
score given to the class i. The goal is to minimize the empirical risk over all the
training examples

R(f) =
∑

t

Δ(yt, f(x̄t)) (7)

where Δ(yt, ŷt) is the loss associated to the predicted class ŷt = f(x̄t). Δ(yt, ŷt) =
0 if yt = ŷt. Instead, Δ(yt, ŷt) = pos loss + c

∑
j:(yj−yt)>0 (yj − yt) if yt �= ŷt,

where pos loss is the distance in positions of yt from the first value ŷt and c is
a normalization parameter.

Using a cross validation test over the training set described above, we obtain
with a linear kernel an accuracy of 54,30% on the predicted class. The accurancy
is not very high as there are many clues where it is hard, also for humans, to
determine the exact class of the solution. This ambiguity occurs mainly between
the classes of these two subset: {MS,FS,NP} and {MP,FP} 11. For the latter
reason and taking into account that no candidate is pruned but just re-weighted,
we considered as a more significant value the covarage of the classifier on the first

11 For example, in some clues is not possible to determine the gender of the solution,
such as ≺Ricopre i vialetti: ghiaia, FS� (≺It can cover a drive: gravel�) or ≺Si
cambiano ad ogni portata: piatti, MP� (≺You use different ones at each course:
plates�).
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Table 5. Coverage.Here
is reported the probability
of finding the correct an-
swer in thefirst kpositions.

Position Coverage
1st pos 54.30%
2nd pos 73.01%
3rd pos 82.67%
4th pos 87.77%
5th pos 91.38%
6th pos 93.60%
7th pos 95.01%
8th pos 96.16%
9th pos 96.91%
10th pos 97.20%

Table 6. Class accuracy. For each class it
is given the percentage of examples inside the
training set and the accuracy of the classifier.

class P of ex. acc. class P of ex. acc.
MS 24.82% 50.23% AV 1.22% 16.28%
NP 18.68% 68.17% EP 1.01% 5.00%
FS 13.68% 32.36% OTHER 0.89% 12.50%
MP 11.17% 65.12% NUM 0.81% 38.71%
NS 9.04% 84.64% AMS 0.36% 21.43%
FP 5.18% 18.99% VS 0.16% 0.00%
ABBR 3.67% 67.18% AMP 0.10% 20.00%
IP 2.86% 92.16% AFP 0.06% 33.33%
VI 2.64% 67.39% AFS 0.03% 33.33%
PC 2.33% 34.62% VP 0.01% 0.00%
PART 1.28% 25.45%

n predicted classes. As shown in table 5, the coverage increases very rapidly and
it is equivalent to 91,38% if we look over the first 5 predicted classes. Thus, as
the number of different target classes is large, this can be considered a very good
result. In fact, the use of the output of the clue classifier causes an increment in
the WSM performance.

Table 6 shows the occurence of each class in the data set, which should be
similar to the one in the whole CWDB. No re-balacing has been made, as the
learning algorithm, during each loop, process the “most violated” constraint
using a cutting plane method. It can be seen also that there are several classes
whose accurancy is high, such as IP, NS, VI, NP and MP.

Moreover, the two non-morphological classes (IP and NS) were introduced in
order to better exploit the morphological classifier. A submodule (NI) was im-
plemented which generates name initials 12 when two subsequent proper nouns
are found in a sentence. The NS class, instead, is associated to all those clues
where the solution does not generally belong to the dictionary, but it can be
inferred from the clue itself 13. At this moment, this type of clues is mainly cov-
ered by the rule-based module. In future, a specific module will be implemented
which will generate appropriate solutions in a more machine learning fashion.
This means by infering likely solutions from previously seen examples.

3.5 Estimating a Confidence on the Lists

After generating a candidate, each module has to estimate the probability that
this list contains the correct answer. This information is then processed by the
merger, in order to correctly join the lists produced by the modules.
12 E.g., ≺Iniziali di Celentano: ac, IP� (≺Name initials of Celentano: ac�). The

celebrity we are talking about is Adriano Celentano, with name initials A.C.
13 E.g., ≺Trasformano la forza in norma: nm, NS� (≺they change the force in norm:

nm�, it should be read ≺they change the word ’forza’ in ’norma’: nm�).
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The confidence estimator of the Web Search Module has been implemented
using a standard MLP neural network. This was trained on a set of 2000 candi-
date lists, using a cross validation set of 500 examples. The main features used
for the description of a candidate list example include: the length of the query,
the idf values of its words, the length of the list and the scores of the candidates.
The output target was set to 1 when the list contained the correct answer, 0
when this was absent. At the end of the training the estimator produced on the
validation set an average square error of 0,08.

4 The Other Modules

The experience gained with the Proverb project led to conclude that there are
a number of important modules which provide an important contribution to the
overall performance of crosswords solving systems.

4.1 The Data-Base Modules

Three different DB-based modules have been implemented in order to exploit
the 42973 clue-answer pairs provided by our crossword database. As a useful
comparison, the CWDB used by Proverb contained around 3.5×105 clue-answer
pairs.

CWDB-EXACT simply checks for an exact clue correspondence in the clue-
entries. For each answer to a clue C the score-probability is computed us-
ing the number of occurrences in the record C. CWDB-PARTIAL employs
MySQL’s partial-match functions, query expansion and positional term distances
to compute clue-similarity scores. The number of answer occurrences and the
clue-similarity score are used to calculate the candidates probabilities. CWDB-
DICTIO simply returns the full list of words with the correct length, using the
number of total occurrences to rank the candidates. Finally, the confidence esti-
mation of the CWDB lists is an entropy function based on the probabilities and
occurrences of the candidates.

4.2 The Rule-Based Module

Italian crosswords often contain a limited set of answers that have no semantic
relation with their clues, but that are cryptically hidden inside the clue itself.
This especially occurs in two-letter and three-letter-answers. Some of the cryptic
jokes that crossword authors apply are more or less standard. The rule-based
module (RBM) has been especially designed to handle these cases. We have
defined eighteen rules for two-letter words and five rules for the three-letter
case.

For example, with a clue like ≺Ai confini del mondo: mo' 14 the RBM works
as follows: pattern → ai confini; object → mondo; rule → extract first and last
letter from the object. Hence, answer → mo.
14 ≺At the edge of the world: wd�, wd is the fusion of the first and the last letter of

object world.
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4.3 The Implicit Module

The goal of the implicit module is to give a score to sequences of letters. The
implicit module is used in two ways: first, within the grid-filling algorithm, to
guarantee that the slots that have no candidate words left during the solving
process are filled with the most probable sequence of characters; second, as a
list filter to rank the terms present in the dictionaries. To do so we used tetra-
grams. The global score of a letter sequence results by the productory of all the
inner tetragram probabilities. Following a data-driven approach the tetragram
probabilities were computed from the CWDB answers.

4.4 The Dictionary Module

Dictionaries will never contain all the possible answers, being crosswords open
to neologisms, acronyms, proper names and colloquial expressions. Nevertheless
these sources can help to increment the global coverage of the clue-answering.

Two Italian dictionaries were used. The first one containing 127738 word
lemmas, and the second one containing 296971 word forms. The output of this
module is given by the list of terms with the correct length, ranked by the
implicit module.

5 Merging the Candidate Lists

The merger module has been implemented in a very straightforward way (a
more sophisticated version will be required in the future). The final score of
each term w is computed as: p(w) = c

∑m
i=0 (pi(w)× confi) where m is the

number of modules used, confi is the confidence evaluation of module i, pi(w) is
the probability score given by module i and c is a normalizing factor.

6 Filling the Crossword Puzzle

As demonstrated by [14] crossword solving can be successfully formalized as a
Probabilistic-CSP problem. In this framework the slots of the puzzle represent
the set of variables, the lists of candidates provide the domain of legal values for
the variables. The goal is to assign a word to each slot in order to maximize the
similarity between the final configuration and the target (defined by the cross-
word designer). This similarity can be computed in various ways. We adopted
the maximum probability function, described by the following equation.

argmax
∀sol:v1,...vn

n∏
i=1

pxi(vi) (8)

where pxi(vi) is the probability that the value vi is assigned to the variable xi

in the target configuration.
This means that given all the possible legal solutions we search for the one

that maximizes the probability of the entire configuration.
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A more efficient metric has been proposed in [14], the maximum expected
overlap function15. We will include this feature in our further work.

Finding the maximum probability solution is an NP-complete problem that
can be faced using heuristic search techniques as A∗. In our implementation the
path cost function is the product of the probabilities of the already assigned
variables and the heuristic function is the product of the best remaining values
of the unassigned variable. Taking the negative log probability, as in eq. 9 and 10,
we transform the grid filling into a minimization problem that can be attacked
using the classic A∗ cost function f(X) = g(X) + h(X). Given d the number
of already assigned variables in X , q the number of unassigned variables, #Dj

the number of legal values for each unassigned variable xj and vk
j ) the k-th legal

value for xj , we have the following:

g(X) =
d∑

i=1

− log(pxi(vi)) (9)

h(X) =
q∑

j=1

− log(
#Dj

argmax
k=1

(pxj (v
k
j )) (10)

Due to the competition time restrictions and to the complexity of the problem
the use of standard A∗ was discarded. For this reason we adopted as a solving
algorithm a CSP version of WA∗ [11]. Our new cost function is given by:

f(X) = γ(d)(g(X) + wh(X)) (11)

w is the weighting constant that makes A∗ more greedy, as in the classic definition
of WA∗, and γ(d) represents an additional score, based on the number of assigned
values d (the depth of the current node), that makes the algorithm more depth-
first, which is preferable in a CSP framework. This depth score increases the
speed of the grid-filling, but it also causes f(X) to be non-admissible.

The grid-filling module works together with the implicit module in order to
overcome the missing of a word within the candidates list. Whenever a variable
xi remains with no available values then a heuristic score is computed by taking
the tetragram probability of the pattern present in xi. The same technique is
used when a slot is indirectly filled (by the insertion of a crossing word) with a
term that is not present within the initial candidates list.

To produce a fast node consistency computation, whenever a variable is se-
lected for expansion, we calculate the remaining legal words using the pointer
technique proposed in [3].

7 Experimental Results

The whole crossword collection has been partitioned in five subsets. The first two
belong to La Settimana Enigmistica, S1

ord containing examples of ordinary diffi-
culty (mainly taken from the cover pages of the magazine) and S1

dif composed
15 The aim here is to maximize the number of words that coincide with the target, and

not the overall probability.
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Table 7. Statistics of the test subsets. T 1
ord is the subset of “easy” crosswords

with short answers, high number of blanks, limited number of clues. T 1
dif provides a

tough challenge, having a high number of clues and long answers. T 2
new and T 2

old are
extremely difficult because they contain a great quantity of socio-political references.
T 3 is a miscellaneous of average difficulty.

T 1
ord T 1

dif T 2
new T 2

old T 3

# Letters 160.7 229.5 156.6 141.1 168.5
# Blanks 69.4 37.5 29.8 31.3 37.8
Clues 59.7 79.5 59.5 61.4 50.5
Avg. Length 4.99 5.53 5.04 4.96 4.61
Target in 1-pos 40.3% 37.3% 37.3% 33.3% 31.2%

by crosswords especially designed for skilled cruciverbalists. An other couple be-
long to La Repubblica, S2

new and S2
old respectively containing crosswords that

were published in 2004 and in 2001-2003. Finally, S3 is a miscellaneous of ex-
amples from crossword-specialized web sites.

Sixty crosswords of the test set (3685 clues, avg. 61.4 each) were randomly
extracted from these subsets in order to form the experimental test suite: T 1

ord

(15 examples), T 1
dif (10 exs.), T 2

new (15 exs.), T 2
old (10 exs.) and T 3 (10 exs.).

Some statistics about the test set are shown in table 7.
To securely maintain WebCrow within the 15 minutes time limit we decided to

gather a maximum of 30 documents per clue. To download the documents, parse
them and compute the statistical filtering an average of 8 minutes are required.
An additional 35 secs are needed by the morphological filter. Thus, in less than
9 minutes WSM’s work is completed. The other modules are much faster and
the global list generation phase can be terminated in less than 10 minutes. To
fulfill the competition requirements we limited the grid-filling execution time to
5 minutes. If a complete solution is not found within this time limit the best
partial assignment is returned.

The results16 that we obtained manifested the different difficulty inherent in
the five subsets. Figure 10 reports WebCrow’s performance on each example.
On T 1

ord the results were quite impressive: the average number of targets in first
position was just above 40% and the CSP module raised this to 80.0%, with
90.1% correct letters. In one occasion WebCrow perfectly completed the grid.
With T 1

dif WebCrow was able to fill correctly 67.6% of the slots and 81.2% of
the letters (98.6% in one case) which is more or less the result of a beginner
human player. On T 2

new WebCrow performs with less accuracy averaging 62.9%
(72% letters). On T 2

old (old crosswords), due to the constant refreshing of Web’s
information, the average number of correct words goes down to 61.3% (72.9%
letters). The last subset, T 3, containes crosswords that belong to completely
different sources, for this reason the contribution of the CWDB is minimal (the

16 WebCrow has been implemented mainly in Java with some parts in C++ and Perl.
The system has been compiled and tested using Linux on a Pentium IV 2GHz with
2GB ram.
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Fig. 10. The coverage of the WSM in relation to the number of documents
used. The WSM can increase its coverage by using more documents for each clue. This
sensibly slows the answering process.

Fig. 11. WebCrow’s performance on the five subsets. The av-
erage and the variance of the correct words are also reported.

coverage and the precision of CWDB-EXACT are more than halved). Neverthe-
less, the WSM still assures a good clue-answering and the solving module is able
to reach 69.1% words correct and 82.1% letters correct.

Altogether, WebCrow’s performance over the test set is of 68.8% (ranging from
36.5% to 100%) correct words and 79.9% (ranging from 48.7% to 100%)correct
letters.



Cracking Crosswords: The Computer Challenge 285

From preliminary tests we observed that allowing an extended time limit of 45
minutes and using more documents from the Web (i.e. 50 per clue) the system’s
performances increase by a 7% in average.

8 Conclusions

The discussion on crosswords solving and, particularly, the WebCrow project
that is mainly described in this paper indicates very promising results. We-
bCrow’s overall architecture allows us to plug in several expert modules in order
to increase the system’s performances. The web-search approach has prooved to
be consistent and we are confident that it could suitable to face a number of
related real-world problems. Future research is mainly expected to b on multi-
lingual crosswords so as to fully exploit the clue answering from the Web, which
does not make linguistic assumptions. On the other hand, robust NLP system
are likely to have a great impact on the answering of the clues. This can be done
by adding several other list filters: stylistic, morpho-syntactical, lexical and log-
ical. On the long run, WebCrow is expected to reach human performance at
expert level and overcome humans in crosswords with multilingual clues.
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Abstract. Since it is known that Model-Based Diagnosis may suffer
from a potentially exponential size of the search space, a number of tech-
niques have been proposed for alleviating the problem. Among them,
some forms of compilation of the domain model have been investigated.
In the present paper we address the problem of evaluating the complexity
of diagnostic problem solving when Ordered Binary Decision Diagrams
are adopted for representing the normal and faulty behavior of the sys-
tem to be diagnosed and the solution space. In particular we analyze
the case of the diagnosis of static models that exhibit a directionality
from inputs to outputs (an important example of this type of models is
the class of combinatorial digital circuits). We show that the problem
of determining the set of all diagnoses and of determining the minimum
cardinality diagnoses can be solved in time and space polynomial with re-
spect to the size of the OBDD encoding the domain model. These results
hold regardless of the degree of system observability including whether
observations are precise or uncertain. We then analyze the complexity of
refining the set of diagnoses by making additional observations and by
using a test vector for troubleshooting the system. In particular we show
that in the latter case we lose the formal guarantee that the diagnosis can
be performed in polynomial time with respect to the size of the compiled
domain model.

1 Introduction

A problem recognized very early in the research on Model-Based Diagnosis
(MBD) concerns the potentially exponential size of the search space and of
the set of alternative diagnoses and consequently, the need for formalisms for
a compact representation of both. Many alternative representation formalisms
have been proposed (e.g. kernel diagnoses [13], consequences [11], scenarios [23]);
most of them exploit the properties of the system structure or behavior in or-
der to efficiently compute and encode diagnoses for restricted but practically
relevant classes of systems.

Researchers in the MBD community have recently started to look at for-
malisms for the symbolic representation of the search and solution spaces in
order to improve the efficiency of tasks such as assessment of system diagnos-
ability and computation of diagnoses (e.g. [8], [20], [9], [10]).

O. Stock and M. Schaerf (Eds.): Aiello Festschrift, LNAI 4155, pp. 287–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Ordered Binary Decision Diagrams (OBDDs, see [6]) are a well-known mathe-
matical tool used in several areas of computing (including AI, see e.g. [3], [15]) for
efficiently representing and manipulating large state spaces. In [21] the relational
model of a Discrete Event System is encoded as an OBDD O; the authors show
that the set of diagnoses can be characterized by a 1st order formula over the
relations of the model and therefore, diagnoses can be obtained by manipulating
O with standard OBDD operators.

However, the use of OBDDs is not a per se panacea for the MBD task. Firstly,
the encoding of the system model (in particular the choice of the order of the
system variables) must be done very carefully in order to avoid the explosion
of the OBDD size. Secondly, once the system model has been encoded as an
OBDD, the application of standard OBDD operators for the computation and
extraction of diagnoses may lead to time and/or space intractability. Finally,
some methods are needed to integrate the filtering and/or ordering of diagnoses
based on preference criteria into the OBDD approach.

In the present paper, we address these issues in the context of the diagnosis
of static models that exhibit a directionality from inputs to outputs. This class
of system models is interesting from a computational point of view since it is
possible to prove tractability results for diagnosis in terms of OBDD encoding,
as we will discuss in the rest of the paper.

Moreover, static models with directionality have a practical relevance since
they can capture the behavior of important classes of systems. First of all it is
worth mentioning the class of combinatorial digital circuits (which has histori-
cally been one of the main test beds for MBD) whose behavior is defined in terms
of flow information from inputs to outputs and does not involve the temporal
dimension; other real-world systems can be translated into this formalism, in
particular the ones that can be modeled via causal networks (e.g. a robotic arm
[23] and an industrial plant [17]).

The class of static models with directionality obviously does not include dy-
namic systems (such as sequential digital circuits) as well as static systems whose
model has to be expressed in terms of qualitative equations1.

The paper is structured as follows. In section 2,we give formal definitions of the
concepts of system model, diagnostic problem and diagnosis on which our work is
based. In section 3, we first provide a short summary on OBDDs andwe discuss how
to encode a system description using OBDDs as well as heuristics for determining
a suitable variable order. In section 4, we show that the problem of determining
the set of all diagnoses and of determining the minimum cardinality diagnoses can
be solved in a time and space polynomial with respect to the size of the OBDD
encoding the domain model. Moreover, in sections 5 and 6, we exploit the flexi-
bility of OBDDs in order to apply our techniques to ambiguous observations and
to Context-Varying Diagnosis, where the system is observed with different test-
vectors. Finally in section 7, we summarize the contributions of this paper.

1 Let us consider for example a pipe in an hydraulic system; if the ends of the pipe are
denoted as A and B we need an equation flow(A) = flow(B) and it is not possible
to specify which of the two determines the value of the other.
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2 Basic Definitions of Model-Based Diagnosis

The following definitions formalize the concepts of system description, diagnostic
problem, diagnosis and preferred diagnosis.

Definition 1. A System Description (SD) is a pair (SV , DT ) where:

- SV is a set of discrete system variables partitioned in a subset SVexo of exoge-
nous variables and a subset SVend of endogenous variables. Set SVexo is further
partitioned in subsets INPUTS (system inputs and commands) and COMPS
(components), while SVend is further partitioned into OBS (observables) and
INTVARS (non-observables); DOM(V) is the finite domain of variable V ∈
SV. In particular, for each C ∈ COMPS, DOM(C) contains a set of behavioral
modes, one corresponding to the nominal mode (OK) and the others to faulty
behaviors

- DT (Domain Theory) is an acyclic set of Horn clauses defined over SV rep-
resenting the behavior of the system (under normal and abnormal conditions);
variables in COMPS and INPUTS never appear in the head of a clause

It is worth noting that the definition of SD is focused on systems whose behavior
can be expressed in terms of input/output relations. Also note that we assume
that DT contains a model not only for the nominal behavior but also for ab-
normal behaviors; in particular, for each behavioral mode of a component, the
model must determine its outputs given its inputs.

Example 1. The class of systems captured by this definition includes devices
with a relevant role in real-world applications such as combinatorial digital cir-
cuits. As an example, in Figure 1 we report the schema of circuit c17 from the
ISCAS85 benchmark (for more details see e.g. [14]). While this circuit is very
simple, it is worth noting that (as it happens in most of the ISCAS85 circuits)
the components are not just the logical gates but also the connections, so the
faults can occur also in the connections. Moreover, apart from nominal behavior,
ISCAS85 foresees two kinds of faults for the components, that is Stuck at 0 and
Stuck at 1 when the output of a component is 0 (or 1) independently of the value
of the inputs.

In particular, we report the nominal and faulty behavior of one of the NAND
gates of circuit c-17 in Figure 2. �
We now introduce the formal definitions of Diagnostic Problem and Diagnosis
commonly adopted for consistency-based diagnosis.

Definition 2. A Diagnostic Problem is a 3-tuple DP = (SD, OBS, INPUTS)
where SD is the System Description, OBS is an instantiation of OBS variables
and INPUTS is an instantiation of INPUTS variables.

Definition 3. Let DP = (SD, OBS, INPUTS) be a diagnostic problem. We
say that an instantiation D = {C1(bm1), . . . , Cn(bmn)} of COMPS is a consist-
ency-based diagnosis for DP iff:

DT ∪ INPUTS ∪OBS ∪D �� ⊥
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Fig. 1. Circuit c17 from the ISCAS85 benchmark

nandg(g1) ∧ ok(g1) ∧ X1(0) ∧ X3(0) ⇒ out(1)
nandg(g1) ∧ ok(g1) ∧ X1(0) ∧ X3(1) ⇒ out(1)
nandg(g1) ∧ ok(g1) ∧ X1(1) ∧ X3(0) ⇒ out(1)
nandg(g1) ∧ ok(g1) ∧ X1(1) ∧ X3(1) ⇒ out(0)
nandg(g1) ∧ sa0(g1) ⇒ out(0)
nandg(g1) ∧ sa1(g1) ⇒ out(1)

Fig. 2. Model of g1 NAND gate

According to the above definition, a diagnosis assigns a behavioral mode to each
component of the system to be diagnosed.

In most diagnostic systems, especially when the set of returned diagnoses can
be very large, we are interested only in the preferred diagnoses, according to some
particular preference criterion. In the following, we focus on a specific preference
criterion involving the number of faults in the diagnoses

Definition 4. Let D = {C1(bm1), . . . , Cn(bmn)} be a diagnosis for DP and
card(D) be the number of assignments Ci(bmi) ∈ D s.t. bmi �= OK. We say
that D is a minimum cardinality diagnosis for DP iff � ∃D’ s.t. D’ is a diagnosis
for DP and card(D’) < card(D).

3 Encoding the System Model into an OBDD

Before discussing the issues related to the encoding of the model of the system to
be diagnosed, we report a short summary on the main characteristics of OBDDs
that will be exploited in the remainder of the paper. For a much more detailed
discussion on OBDDs, please refer to e.g. [6], [16].

3.1 Summary on OBDDs

An OBDD is a formalism for representing a Boolean function F(x1, . . . , xn).
Given an ordering of x1, . . . , xn an OBDD is a rooted DAG whose nodes include
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(at most) two terminal nodes labeled 0 and 1 and non-terminal nodes each
labeled with one of the xi variables.

Every internal node xi has exactly two successors low and high (if xj is
successor of xi in the DAG then xi must precede xj in the ordering).

Every path P from the root to node 1 can be viewed as an assignment to the
variables involved in P (xi = 1 if high(xi) is in P and xi = 0 if low(xi) is in P)
which guarantees that the value of F is 1. The size |O| of an OBDD O is defined
as the number of its nodes.

It is known that the OBDD of minimal size is unique for a given function F
and a fixed variable order VO. Variable order choice is a preminent issue when
encoding a Boolean function as an OBDD: in [6], e.g., Bryant shows a theory
whose OBDD encoding size varies from linear to exponential just because of
different variable orders; moreover, improving a given variable order (w.r.t. the
OBDD size) has been shown to be NP-complete [4].

Manipulations of Boolean functions can be mapped to operations on the OB-
DDs which represent them. We denote with build the operator that, when applied
to a Boolean function F and a variable order VO, returns the OBDD represent-
ing F according to order VO.

Binary logical operations can be performed on OBDDs O1 and O2 with the
apply operator whose first argument is the binary operator op to be applied,
while the restrict operator substitutes a constant to a variable in an OBDD.

The existential quantification of a variable B in an OBDD O consists in
computing the restrictions O1 and O0 of O with B = 1 and B = 0 respectively
and then applying the ∨ operator between O1 and O0.

Table 1 reports the time and space complexity of the main OBDD operators.
The following theorem due to Sieling and Wegener [19] relates the number

of copies of each internal variable xi of the OBDD with the encoded Boolean
function f .

Theorem 1. (Sieling and Wegener) Let x1, . . . , xn be the given variable or-
der and let f be defined on x1, . . . , xn. The reduced OBDD for f contains as
many xi-nodes (i.e., nodes labeled by variable xi) as there are different subfunc-
tions f |x1=a1,...,xi−1=ai−1 , for a1, . . . , ai−1 ∈ {0, 1}, which depend essentially on
xi (function φ depends essentially on xi if φ|xi=0 is different from φ|xi=1).

According to the theorem, the number of copies of a variable xi can be expo-
nential in the number of variables that precede it in the variable order; for this
reason the theorem provides an explanation of the exponential complexity of the
build operator.

Table 1. OBDD operators and their complexity

op time output size
build(F(x1, . . . , xn), VO) O(2n) ≤ 2n

apply(op, O1, O2) O(|O1| · |O2|) ≤ |O1| · |O2|
restrict(O, xi = b) O(|O|) ≤ |O|
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However, the practical relevance of OBDDs stems from the fact that, in many
cases, it is possible to find a variable order s.t. the size of the OBDD representing
F(x1, . . . , xn) is much smaller than 2n; in the past few years a number of heuristic
techniques for computing variable orders have been proposed (e.g. [1], [2]).

3.2 Encoding Functions and Sets over Multi-valued Variables

By definition an OBDD O represents a Boolean function F over Boolean vari-
ables B1, . . . , Bm. It is straightforward, however, to represent a Boolean function
M over a set of multi-valued variables {V1, . . . , Vm}.

First, since OBDDs handle only Boolean variables (whose value is either 0 or
1), a generic multi-valued variable V with domain DOM(V ) = {v1, . . . , vk} will
be mapped to a set of Boolean variables VB = {Vv1 , . . . , Vvk

} 2.
We need to explicitly enforce the fact that a multi-valued variable V assumes

exactly one value; this can be expressed by a completeness formula (i.e. Vv1 ∨
. . . ∨ Vvk

) and a set of mutual-exclusion formulas (i.e. ∼(Vvi ∧ Vvj ) ∀i �= j).
Given a Boolean function M(V1, . . . , Vm) over multi-valued variables

{V1, . . . , Vm}, let’s consider function MB(V1,B , . . . , Vm,B) s.t.:

MB(V1(v1)B, . . . , Vm(vm)B) = 1 ⇔M(V1(v1), . . . , Vm(vm)) = 1

where Vi(vi)B means that Boolean variable Vi,vi is set to 1 and Boolean variables
Vi,vj , vj ∈ DOM(Vi), vj �= vi are set to 0.

The OBDD OMB which represents MB also encodes the original function
M, since it is straightforward to map back and forth between instantiations of
the set of multi-valued variables and instantiations of the associated Boolean
variables.

From this result it directly follows that it is also possible to encode arbitrary
sets of instantiations. Indeed, M implicitly defines a set instset(M) as follows:

instset(M) = {I = (V1 (v1 ), . . . ,Vm(vm))|M(I) = 1}

Given the OBDD OM which encodes M, in order to compute instset(M) it is
sufficient to perform an exhaustive visit of all the paths in OM from the root
to node 1. Note that due to completeness and mutual exclusion formulas we are
guaranteed that each path contains exactly one assignment to each multi-valued
variable.

Such a mechanism can be exploited for providing a complete enumeration
of diagnoses once we have computed an OBDD which represents them. The
enumeration has time complexity linear in the cardinality of the set of diagnoses.

2 In general we’ll denote with SB the set of Boolean variables associated with the set
S of multi-valued variables. The proposed encoding is clearly not the most efficient,
especially for multi-valued variables with large ranges; all the discussions in this
paper, however, apply to more efficient encodings as well.
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3.3 Encoding the Domain Theory

Given a System Description according to Definition 1, the Domain Theory DT
is a propositional logical theory expressed in terms of multi-valued variables
{V1, . . . , Vm} = SV . We can associate DT with a Boolean function MDT over
SV variables s.t.:

DT ∪ {V1(v1) ∧ . . . ∧ Vm(vm)} �� ⊥ ⇔MDT (V1(v1), . . . , Vm(vm)) = 1

i.e. an instantiation of SV is consistent with DT iff applying MDT to it yields
1. As shown in the previous section, there exists an OBDD ODT which encodes
MDT ; we will consider ODT as the OBDD encoding of DT .

In order to build OBDD ODT the formulas in DT first need to be rewritten by
substituting the instances of multi-valued variables with the associated Boolean
variables. Thus, a generic Horn clause in DT :

N1(v1) ∧ . . . ∧Nk(vk) ⇒M(u) becomes N1,v1 ∧ . . . ∧Nk,vk ⇒Mu

The OBDD ODT is then built by putting in conjunction the mutual exclusion
and completeness formulas for variables V1, . . . , Vm with the transformed DT
formulas by using the standard apply operator. It is worth noting that, due to
the addition of the mutual exclusion and completeness formulas, ODT encodes a
propositional theory which is not Horn; in particular, the associated diagnostic
problems fall in the class of incompatibility abduction problems that are known
to be NP-hard [7].

3.4 Choosing an Order for the System Variables

As noted in section 3.1, one major concern in encoding any propositional theory
as an OBDD regards the choice of variable order. An effective means to focus the
search for a good order consists in taking into account the (implicit) structure
of the Domain Theory (see e.g. [1], [2]).

In our approach, it is possible to make such a structure explicit by exploiting
the directionality between inputs and outputs of the system. In particular we
introduce the notion of dependency among system variables.

Definition 5. Given SD = (SV, DT) the associated System Dependencies Gr-
aph G is a DAG representing the causal structure of the system; the nodes of
G are in one-to-one correspondence with the variables in SV and, whenever a
formula N1(v1)∧ . . .∧Nk(vk)⇒M(u) appears in DT , nodes N1 through Nk are
parents of M in G. We denote with rev(G) the DAG obtained by inverting the
direction of all edges in G.

We define a family to be a set of variables containing a variable V and its parents
in G.

The structure of G can be exploited in different ways to get a variable order.
For our purposes, we have identified three criteria that relate the structure of G,
the order of multi-valued variables and the order of the corresponding Boolean
variables.
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Fig. 3. System Dependencies Graph for circuit c17

- directionality: always index the parent variables in the families of G before the
child variable

- family vicinity: index variables in the same family of G “as close as possible”
- variable vicinity: always index the Boolean variables representing the values

in the domain of a multi-valued system variable in sequence (i.e. if DOM(V ) =
{v1, . . . , vk} then variables Vv1 , . . . , Vvk

have indexes i to (i+k−1) in the order)

The first criterion plays an important role in the complexity results that will
appear in the next section while the second corresponds to a guideline that
is widely recognized as important for obtaining good variable orders ([1], [2]).
Finally, the third criterion determines the order of the Boolean variables once
the order of multi-valued variables has been fixed.

In [24] we have presented a simple strategy that satisfies the criteria introduced
above. In particular, such a strategy orders the variables through a depth-first
visit of rev(G) taking into account that rev(G) can be multiply-connected and
multi-rooted.

Figure 3 reports the System Dependencies GraphG for the combinatorial digital
circuit c17 from the ISCAS85 benchmark. Despite the fact that the circuit involves
just 5 inputs, 6 logical NAND gates and 2 outputs, graphG is not so simple because
also the connections between components are modeled and can fail.

Figure 3 reports also the variable order obtained with the strategy mentioned
above; note in particular that the order satisfies the directionality condition.
According to this variable order, the size of the OBDD encoding the model of
c17 is just 721 nodes.

4 Computing Diagnoses

4.1 Computing the Complete Set of Diagnoses as an OBDD

Many approaches to MBD try to compute just preferred diagnoses in order to
alleviate the computational cost of diagnosis (e.g. [12]) . On the contrary, in our
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1 Function Diagnose(ODT , OBS, INPUTS)
2 ODT,OBS := DisregardVariables(ODT , INTVARS)
3 ODIAG := AssignVariables(ODT,OBS, OBS ∪ INPUTS)
4 Return ODIAG

5 EndFunction

1 Function DisregardVariables(OIN , ELIMVARS)
2 OTMP := OIN

3 For Each B ∈ ELIMVARSB

4 OTMP := apply(∨, restrict(OTMP , B), restrict(OTMP , ∼B))
5 OOUT := OTMP

6 Return OOUT

7 EndFunction

1 Function AssignVariables(OIN , KNOWNVARS)
2 OTMP := OIN

3 ForEach V (v) ∈ KNOWNVARS
4 OTMP := restrict(OTMP , Vv)
5 OOUT := OTMP

6 Return OOUT

7 EndFunction

Fig. 4. Computation of Diagnoses

approach we show that it is computationally feasible (in most cases) to compute
the set of diagnoses and then to extract the most preferred ones.

First of all, we show how the OBDD representing the set of all the diagnoses
for a diagnostic problem can be computed by an appropriate sequence of logical
operations involving the OBDD ODT representing the Domain Theory. Figure 4
reports the diagnostic algorithm Diagnose().

Since we don’t have any information about INTVARS variables, and they
do not appear in the resulting diagnoses (which are defined just in terms of
COMPS), the algorithm starts by filtering out the INTVARS variables from
ODT in order to obtain a new OBDD ODT,OBS .

This is accomplished by calling function DisregardVariables()which, given
the set ELIMVARS of multi-valued variables to be disregarded, considers each
Boolean variable B ∈ ELIMVARSB and performs an existential quantification
over it.

The subsequent call to AssignVariables() in Diagnose() has the effect of
incrementally constraining ODT,OBS with each piece of information provided by
the inputs (i.e. INPUTS) and available observations (i.e. OBS), by using the
standard OBDD operator restrict.

The resulting OBDD ODIAG represents the set of instantiations of variables
COMPS consistent with DT , INPUTS and OBS, i.e it represents the set of
consistency-based diagnoses.

The following theorem states that the simple algorithm given above for com-
puting diagnoses from ODT is both correct and complete.
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Theorem 2. Let DP = (SD, OBS, INPUTS) be a diagnostic problem, and
ODIAG be the OBDD computed by algorithm Diagnose(). Then the set of instan-
tiations of COMPS represented by ODIAG contains all and only the consistency-
based diagnoses for DP.

Proof. From Section 3.3, we know that ODT represents a Boolean functionMDT

s.t.:
MDT (C,O, I,N ) = 1 ⇔ DT ∪ C ∪ O ∪ I ∪N �� ⊥

where C is an instantiation of COMPS variables, O is an instantiation of OBS
variables, I is an instantiation of INPUTS variables and N is an instantiation
of INTVARS variables.

Let ODT ,OBS be the OBDD obtained from ODT through projection on
COMPS ∪OBS ∪ INPUTS variables, so that it represents the following Boolean
function:

MDT ,OBS (C,O, I) ≡ (∃N )(MDT (C,O, I,N ))

It follows that MDT ,OBS satisfies the equivalence:

MDT ,OBS (C,O, I) = 1 ⇔ ∃N (DT ∪ C ∪ O ∪ I ∪N �� ⊥)

After we impose that OBS variables have value OBS and INPUTS variables
have value INPUTS we obtain a new function M′

DT ,OBS s.t.:

M′
DT ,OBS (C) = 1 ⇔ ∃N (DT ∪ C ∪OBS ∪ INPUTS ∪ N �� ⊥)

It is immediate to see that M′
DT ,OBS (C) is the function encoded by OBDD

ODIAG returned by Diagnose(). In order to conclude that M′
DT ,OBS is the

characteristic function of the set of consistency-based diagnoses for DP there
remains to show that:

∃N (DT ∪ C ∪ OBS ∪ INPUTS ∪ N 
� ⊥) ⇔ DT ∪ C ∪ OBS ∪ INPUTS 
� ⊥

(note that the right member of the equivalence is indeed exactly the definition
of consistency-based diagnosis).

The implication from left to right is obvious, since the � relationship is mono-
tonic. As for the implication from right to left, it is sufficient to note that,
since the standard propositional derivation denoted with � is correct and com-
plete, there must exist a consistent assignment to SV variables that assigns C
to COMPS, OBS to OBS, INPUTS to INPUTS and some N to INTVARS.
Instantiation N is then an example satisfying the existential quantification on
the left side of the equivalence. �

As for the computational complexity of the diagnostic algorithm, we will report
results concerning tractability of diagnosis. In particular, we first state two lem-
mas concerning the computational complexity of DisregardVariables() and
AssignVariables() and then we give a result on the complexity of the Diag-
nose() function.
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Lemma 1. If the variable order satisfies directionality and variable vicinity, the
time complexity of the call to DisregardVariables() is:

O(|INTVARS | · |ODT |2 )

Moreover, |ODT ,OBS | ≤ |ODT |.

Proof. We first show that, under the theorem’s hypotheses, at each iteration of
the ForEach loop in DisregardVariables() (Figure 4), the size of OTMP does
not increase.

Let V ∈ INTVARS , DOM (V ) = {v1 , . . . , vk} and assume that Boolean vari-
ables VB = {Vv1 , . . . , Vvk

} have been assigned indexes i, . . . , i + k − 1 (because
of variable vicinity).

It is easy to see that, given a partial path P i−1 in OBDD OTMP from the
root up to the Boolean variable with index (i − 1), all the extensions of P i−1

that lead to terminal node 1 must agree that some Vvl
∈ VB has value 1 while

each Vvj ∈ VB, vj �= vl has value 0 (in other words, all the extensions of P i−1

must agree that multi-valued variable V has value vl).
This follows from the fact that directionality prescribes to order parent vari-

ables in the System Influence Graph G before their child variable and from our
assumption that the model is deterministic.

From this fact, it is immediate to see that the existential quantification of
{Vv1 , . . . , Vvk

} results just in the nodes labeled with {Vv1 , . . . , Vvk
} being removed

from OTMP , without any further change, i.e. at each iteration the size of OTMP

does not increase.
From the above discussion it follows that each execution of the body of the

ForEach loop in DisregardVariables() takes time O(|ODT |2 ), and then the
execution of DisregardVariables() itself takes time O(|INTVARS | · |ODT |2 ).

Moreover, since none of the operations performed by DisregardVariables()
increases the size of OTMP , the size of OBDD ODT ,OBS must be smaller or equal
to the size of ODT . �

Lemma 2. The time complexity of the call to AssignVariables() is:

O(|INPUTS ∪OBS | · |ODT ,OBS |)

Moreover, |ODIAG | ≤ |ODT ,OBS |.

Theorem 3. The time complexity of Diagnose() is:

O(|INTVARS | · |ODT |2 + |INPUTS ∪OBS | · |ODT |)

Moreover, |ODIAG | ≤ |ODT |.

It is easy to see that Lemma 2 directly follows from the complexity of the basic
OBDD operators (section 3.1). Theorem 3 just summarizes the results of the two
lemmas.

This result provides us with upper bounds on time and space complexity of
computation of the set of consistency-based diagnoses. This is a very relevant
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1 Function MinCardDiagnose(ODT , OBS, INPUTS)
2 ODT,OBS := DisregardVariables(ODT , INTVARS)
3 ODIAG := AssignVariables(ODT,OBS, OBS ∪ INPUTS)
4 OPREF := apply(∧, ODIAG, Filter[0]); k := 1
5 While (OPREF = 0)
6 OPREF := apply(∧, ODIAG, Filter[k]); k := k+1
7 Return OPREF

8 EndFunction

1 Function ComputeFaultCardinalityFilters(COMPS, VO)
2 n := |COMPS |
3 Filter[0] := build(C1,OK ∧ . . . ∧ Cn,OK , VO)
4 For k:=1 To n
5 Filter[k] := build(0)
6 For i:=1 To n
7 Oi := restrict(FILTER[k-1], Ci,OK)
8 Oi := apply(∧, Oi, build(∼Ci,OK))
9 Filter[k] := apply(∨, Filter[k], Oi)
10 Return Filter[]
11 EndFunction

Fig. 5. Computation of Fault Cardinality Filters and Minimum Cardinality Diagnoses

result showing that each diagnostic problem can be solved in polynomial time
provided that a compact encoding for the System Description can be found.
Obviously this compact encoding is not always possibile (otherwise we would
have found a polynomial algorithm for the NP-hard problem of MBD), however
a good variable order in many cases produces a compact encoding.

The above results also say something relevant about the encoding of all possi-
bile diagnoses (we know that in principle they may be exponential in the number
of components): the size of the OBDD ODIAG encoding the diagnoses is no larger
than the size of the OBDD ODT encoding the Domain Theory.

It is worth noting that for many devices the diagnostic problems always involve
the same set of observable parameters OBS.

In this case we can exploit this regularity by executing DisregardVari-
ables() only once off-line; as an important benefit, the on-line computational
complexity becomes linear in |ODT | (i.e. O(|INPUTS ∪OBS | · |ODT ,OBS |)).

4.2 Computing Preferred Diagnoses

As stated above, the client of a diagnostic system may be interested just in the
preferred diagnoses, especially when the set of returned diagnoses can be very
large. Preferred diagnoses can be efficiently computed from ODIAG when the
selected preference criterion is to minimize the number of faults (see Definition 4).

The basic idea consists in pre-compiling an OBDD Filter[k] representing the
set of all assignments to COMPS involving k faults, for each k = 0, . . . , n; by
filtering the set of all the diagnoses for a specific diagnostic problem (i.e. ODIAG)
with such OBDDs we can determine the set of diagnoses with k faults.
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Figure 5 reports the diagnostic algorithm computing the minimum cardinality
diagnoses. The algorithm is essentially the same as the one reported in Figure 4
but the computation of preferred diagnoses is added. In particular, the algorithm
intersects ODIAG with Filter[k] starting with k = 0 and stopping as soon as the
result OPREF is not empty.

The algorithm to be run offline for computing the complete set of fault car-
dinality filters is shown in Figure 5. OBDD Filter[k] represents all and only
the instantiations of COMPS variables containing exactly k faulty components.
OBDD Filter[0] represents the situation with no fault, i.e. all the components
are in the OK mode. Intuitively, for each instantiation of COMPS represented
in Filter[k-1], Filter[k] substitutes the assignment of the OK mode to a compo-
nent Ci with all the possible faulty behavioral modes of Ci.

For computational complexity we show results concerning the off-line compu-
tation of fault cardinality filters as well as results concerning the on-line compu-
tation of minimum-cardinality diagnoses based on the filters.

Theorem 4. The time complexity for computing fault cardinality filters is poly-
nomial in |COMPS|. The size of each filter Filter[k], k = 0, . . . , |COMPS| is
O(|COMPS|2).
Proof. Let’s assume that the variables in COMPS are ordered as (C1 , . . . ,Cn)
according to VO.

In order to prove that the size of Filter[k] is O(|COMPS |2 ), we first prove
that, for each Ci ∈ COMPS , assuming that the first value of DOM (Ci) in VO
is fbmi , Filter[k] contains at most (k + 1) copies of the Boolean variable Ci,fbmi

encoding assignment Ci(fbmi ).
Let Fk be the Boolean function represented by OBDD Filter[k]; moreover, let

function Fk|C1(bm1)B ,...,Ci−1(bmi−1)B
be the restriction of Fk that assigns bmj to

Cj , j = 1, . . . , i− 1.
The only contribution of Fk|C1(bm1)B ,...,Ci−1(bmi−1)B

to the value of Fk consists
in the number of faults that are present in the following assignment:
C1 (bm1 ), . . . ,Ci−1 (bmi−1 ).

Such a number must clearly be between 0 and k and thus the number of copies
of Ci,fbm must be at most k + 1.

As for a variable Ci,bmi , bmi �= fbmi , it is immediate to see that the num-
ber of restrictions of Fk with constant assignments to all the Boolean variables
preceding Ci,bmi , bmi �= fbmi in VO now depends on two possibly independent
factors:

- the number of faults that are present in the restriction (which must be in the
range 0, . . . , k)

- whether multi-valued variable Ci has already been assigned a value in the
restriction or not (either true or false)

It follows that the number of restrictions, and consequently of copies of node
Ci,bmi , is at most 2 · (k + 1).

Since k ≤ |COMPS |, the number of copies of any Boolean variable in Filter[k]
is O(|COMPS |) and the size of Filter[k] itself is O(|COMPS |2 ).
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As for the time complexity of function ComputeCardinalityFilters(), we
note that the body of the inner loop is executed |COMPS |2 times.

Since the size of each Filter[k] is O(|COMPS |2 ), it is easy to see that each
execution of the inner body takes time O(|COMPS |4 ) (determined by the sec-
ond apply operation). It follows that the execution of the function takes time
polynomial in |COMPS |. �

Corollary 1. The time complexity of computing OPREF starting from ODIAG

is O(|ODIAG | · |COMPS |3 ).

The theorem and its corollary ensure that both the off-line computation of fault
cardinality filters is tractable and that the size of any computed filter is small
despite the fact that some of the filters represent an exponential number of
assignments to COMPS.

By combining the results of Theorem 3 and Corollary 1 we have the guarantee
that the computation of preferred diagnoses is not only tractable but also efficient
if the Domain Theory can be compactly encoded into an OBDD.

5 Dealing with Ambiguous Observations

In many domains of practical interest some parameters characterizing the system
are continuous variables that are discretized into a set of qualitative values in
order to describe the system behavior in a qualitative way. As an example, let us
consider an electric circuit where the behavior is described in terms of qualitative
deviations and (deviation of) the intensity Ix at a specific probe point x can take
values into {0, −, −−, +, ++}. In some cases these qualitative distinctions may
not be directly captured by a sensor and therefore some form of ambiguity affects
the observation; for example we may have an observation (Ix, {+, ++}) meaning
that Ix = + ∨ Ix = ++.

More generally, we assume that OBS consists of a list of pairs (O, {v1, . . . , vk})
where O is a variable whose observed value is v1 ∨ . . . ∨ vk.

In this situation each observation is just a weak constraint on the value of a
variable O and such a constraint cannot be enforced via the restrict operator.

1 Function DiagnoseAmbiguousObs(ODT , OBS, INPUTS)
2 ODT,OBS := DisregardVariables(ODT , INTVARS)
3 OTMP := AssignVariables(ODT,OBS, INPUTS)
5 ForEach (O, {v1, . . . , vk}) ∈ OBS
6 OO := build(0)
7 ForEach vi ∈ {v1, . . . , vk}
8 OO := apply(∨, OO, build(Ovi))
9 OTMP := apply(∧, OTMP , OO)
10 ODIAG := DisregardVariables(OTMP , OBS)
11 Return OBDDDIAG

12 EndFunction

Fig. 6. Diagnosis with Ambiguous Observations
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Function Diagnose() has to be revised and the new version DiagnoseAmbigu-
ousObs() is reported in Figure 6. The main difference concerns the enforcement
of the constraints represented by observations: in the new version we have to
build an OBDD OO for capturing the ambiguous reading of each observation O.

Observable variables are still present in OTMP after intersecting it with all
the OOs and therefore function DisregardVariables() has to be invoked.

Polynomial complexity is guaranteed also for diagnosis with ambiguous ob-
servations, through an extension of Corollary 3.

6 Dealing with Context-Varying Diagnostic Problems

An important way for discriminating among alternative diagnoses consists in
observing the behavior of the system to be diagnosed under different contextual
conditions (e.g. for isolating faults in digital circuits as well as for debugging
software). With reference to the framework of [5] the change of inputs over
time is the simplest class of temporal phenomena i.e. context-varying. In fact,
discrimination among diagnostic hypotheses is possibile by assuming that in the
time window [1, . . . , w] the behavioral modes of the components of the system
do not change over time. Let us suppose that we have at disposal the pairs
INPUTSi, OBSi for any time instant i in the time window [1, . . . , w].

We can simply compute the diagnoses over the test vector according to the
following expression:

ODIAG = apply(∧,ODIAG,w , apply(. . . , apply(∧,ODIAG,1 ,ODIAG,2 ) . . .))

where ODIAG,i is an OBDD representing instantaneous diagnoses at time i com-
puted according to algorithm Diagnose() (Figure 4).

The extension to context-varying diagnosis seems quite strightforward: we
have just to perform instantaneous diagnosis at w different time points and then
intersect the results. Unfortunately, although we know that the computation of
instantaneous diagnoses at each time point is polynomial in the size of ODT , the
complexity of context-varying diagnosis is not guaranteed to be polynomial as
stated in the following theorem.

Theorem 5. Let DP = (SD, OBS, INPUTS) be a Context-Varying Diagnos-
tic Problem, with OBS = (OBS1, . . ., OBSw) and INPUTS = (INPUTS1,
. . ., INPUTSw).

Moreover, let Vv be the Boolean variable representing value v of variable V ∈
SV and let WDi(Vv ) (resp. WD(Vv)) be the number of copies of Vv in OBDD
ODIAG,i (resp. ODIAG ).

Then, if we define WDmax (Vv ) = maxi=1 ,...,wWDi(Vv ), the following holds:

WD(Vv ) = O(min((WDmax (Vv ))k , (Dmax )|COMPS |))

where k ≤ w is the number of different contexts in INPUTS and Dmax is the
size of the largest domain of a component, i.e. Dmax = maxi=1 ,...,n(|DOM (Ci)|).
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Vm

Vm-1 Vm-k

Vm-k+1 V0

Fig. 7. Schema of G for the proof of theorem 5

Proof. Let INPUTS1, . . ., INPUTSk be the different contexts in INPUTS.
By definition of Context-Varying Diagnosis we have that:

ODIAG = apply(∧,ODIAG,w , apply(. . . , apply(∧,ODIAG,1 ,ODIAG,2 ) . . .))

Since ∧ is commutative and associative, and since necessarily ODIAG,i =ODIAG,j

when INPUTS i = INPUTSj (because of determinism), we can rewrite the
expression above as:

ODIAG = apply(∧,Ok
DIAG , apply(. . . , apply(∧,O1

DIAG ,O2
DIAG) . . .))

where Oi
DIAG encodes the instantaneous diagnoses when INPUTS has value

INPUTSi.
Recalling that the maximum number of copies of Boolean variable Vv in each

OBDD ODIAG,i is bounded by WDmax (Vv ) and that all the OBDDs Oi
DIAG are

defined exactly on the same variables, it is easy to see (by taking into account
the way apply works [6]) that the maximum number of copies of Vv in ODIAG

can’t be larger than (WDmax (Vv ))k .
At the same time, since ODIAG encodes assignments to COMPS variables,

the maximum number of copies of Vv can’t exceed the maximum number of such
assignments (i.e. (Dmax )|COMPS |) because of Theorem 1. Therefore, the claim of
the theorem is demonstrated.

In order to show how this upper bound can actually be reached, let’s consider
a simple case where rev(G) is a directed tree. Figure 7 shows a schematic vision
of the System Influence Graph G where some of the nodes in G that are relevant
for our discussion are showed as circles and labeled with the associated variable
names.

We assume that the System Variables have been ordered as (V1, . . . , Vm)
respecting the directionality condition stated in section 3.4 (note e.g. in fig-
ure 7 that the root node of rev(G) is Vm while the rightmost leaf is V0). More-
over, for each variable V ∈ SV s.t. DOM (V ) = {v1 , . . . , vl} we assume that
the corresponding Boolean variables VB = {Vv1 , . . . , Vvl

} have been ordered as
(Vv1 , . . . , Vvl

) (respecting the variable vicinity condition).



Model-Based Diagnosis Through OBDD Compilation 303

We further assume that variable Vm−k+1 in Figure 7 belongs to COMPS and
focus on the number of copies of Vm−k+1,v1 (i.e. the Boolean variable that is true
when value v1 is assigned to variable Vm−k+1)3. By applying arguments similar
to the ones used in the proof of Theorem 4, it is not difficult to see that the
number of copies of Vm−k+1,v1 in ODT can be up to |DOM (Vm−k)|. Intuitively,
the assignments to variables V0 to Vm−k are summarized by the value assigned
to Vm−k, that is the only one to be“remembered”in order to determine, together
with the value of variable Vm−1, the value of the root, i.e. variable Vm.

Thanks to Theorem 1, we know that the number of copies of Vm−k+1,v1 in
ODT,OBS is the same as inODT ; therefore, also the number of copies of Vm−k+1,v1

in ODIAG,i is up to |DOM (Vm−k)|.
Let’s consider the OBDD OTMP obtained by intersecting O1

DIAG and O2
DIAG .

The set of assignments to variables V0 to Vm−k−1 that cause Vm−k to take some
value v may be different in OBDDs O1

DIAG and O2
DIAG . This means that, in

OBDD OTMP , for each assignment I to variables V0 to Vm−k we may need to
“remember”:

- the value assigned by I to Vm−k when INPUTS has value INPUTS1

- the value assigned by I to Vm−k when INPUTS has value INPUTS2

This leads to a number of copies of Vm−k+1,v1 that is up to |DOM (Vm−k)|2 .
It is easy to generalize this result to the intersection of O1

DIAG , . . . ,Ok
DIAG where

the number of copies of Vm−k+1,v1 can grow up to |DOM (Vm−k)|k (provided it
is smaller than (Dmax )|COMPS |, as explained above). �

The theorem tells us that, even if the size ofODT is not exponential in |COMPS |,
the size of ODIAG may be exponential in |COMPS | in case enough different
inputs are provided in the time window [1, . . . , w] associated with the diagnostic
problem.

7 Discussion and Conclusions

In order to handle the computational complexity of the MDB task (and the
potentially exponential number of solutions to diagnostic problems), in the MBD
community there is an increasing interest regarding the adoption of symbolic
methods for encoding both the domain knowledge as well as the solution space
of diagnostic problems. So far, most of the attention has been drawn by OBDDs
(see e.g. [21], [18]), because of the maturity of the theoretical analysis on OBDDs
and the availability of efficient tools implementing the standard operators.

In the present paper, starting from the preliminary results reported in [22]
and [24], we have proposed possible solutions to the issues that arise when using
OBDDs for the diagnosis of static systems, from the system encoding up to the
presentation of preferred diagnoses.

The main contribution of the paper concerns the analysis of both space and
time complexity of the diagnostic algorithm. These theoretical results provide
3 If Vm−k+1 
∈ COMPS the proof would just be slightly more complicated.
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upper bounds on the time and space needed for solving diagnostic cases; such
bounds are polynomial in the size of the OBDD encoding the system model
and hold for any diagnostic case independently of the number of faults and the
available observations. We have also shown that similar results hold when the
observations are ambiguous.

The second major contribution of the paper concerns the result on compu-
tational complexity of context-varying diagnosis. In particular, we have shown
that there is no guarantee that the space and time upper bounds are polynomial
in the size of ODT . This negative result is quite important because it shows that
the tractability properties that hold for the atemporal diagnoses cannot be ex-
tended to any system where some of the parameters change over time. In fact,
the case of Context-Varying Systems is just the simplest class in the temporal
diagnosis ontology proposed in [5].

All the positive complexity results stated in the paper depend on the size of
the OBDD encoding the system model. While it is often possible, by carefully
selecting the variable order, to get compact encodings even for large systems,
there are cases where the size of the encoding is too large to be practically
manageable.

However, this does not necessarily mean that the methods described in this
paper are not applicable. In a recent paper [25] we have shown how a com-
plex system can be partitioned into a set of subsystems that can be encoded
separately and how global diagnoses can be computed from diagnoses local to
each subsystem. In this way we have been able to diagnose very complex digital
circuits involving hundreds of components.
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Abstract. The use of classification trees in two quite different applica-
tion areas –business documents on one side and geographic information
systems on the other– is presented. What is in common between such
so different applications of the classification techniques based on trees is
the need of complementing the straightforward use of induction with the
exploitation of some form of deductive, or better to say expert, knowl-
edge. When working on business documents, the expert knowledge, in
the form of rules elicited from human experts, is used to improve the
construction of the classification tree by complementing the inductive
knowledge coming from the examples in the choice of the next node
to add to the tree. When working on geographic information systems,
the expert knowledge, in the form of specifying which are the spatial
relationships among the geographic objects, is used to extract the infor-
mation from the GIS in a form that can be then processed in an inductive
style.

1 Introduction

Classification is one of the most useful techniques in knowledge discovery. It
allows one to construct a classifier via the analysis of already classified examples,
and then to use it to assign a new observation to a class. Several models for
classification have been proposed, and classification trees are among the most
successful. In the next subsection a description of the construction process for a
classification tree is given.

In our research experience, especially when looking at applications of knowl-
edge discovery techniques to real problems, we have found the model of classifi-
cation trees extremely useful. At the same time, as soon as we have approached
applications, we have realized that plain induction techniques, like the ones em-
bedded in the basic algorithms for the construction of classification trees, are
not sufficient. In fact, such applications do not offer data simply organized as a
table in which the columns are the attributes common to each observation and
the rows are the single observations.

The solutions we propose follow a common strategic approach, that is the
integration of the basic induction techniques with expert knowledge. In a way,
we propose a reconciliation between the basic inductive approach emerging from
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the machine learning field and the knowledge based deduction approach emerging
from the expert systems field.

The need for approaching the construction of classification trees in such a
more complex way came out naturally when dealing with complex data and
knowledge.

The first opportunity is given by the need of extending the classification ap-
proach to knowledge stored in a geographical information system. Geographic
Information Systems, GIS from now on, contains geo-referenced information, i.e.,
in database terms, the values of the attributes are bound to some geographic
entity. The point is that the geography may be different for each of the attributes
and the relationships among the geographies of the different attributes may be
interpreted according to different perspectives. Here it comes the need of using
some deep knowledge of the application area in order to extract the data for the
induction step.

The second opportunity is given by an application in the business area. The
idea is to classify company plans for innovating their products and processes in
order to foresee whether they may be successful or not. The construction of the
classifier is based, as usual, on existing examples for which the success/failure is
known. However, it came out quite clearly that the information embedded in the
plans, although quite complex, was not sufficient for constructing a well working
classifier. The information in the plans is somewhat contextual, and in order to
exploit it in an optimal way it is necessary to complement it with a general
understanding of the rules - the general rules - that underlie the innovation
process. Such rules have to be elicited from experts of the field. We have actually
interviewed colleagues in the Business School of our University to that purpose.
A critical point has been how to represent the extracted knowledge and how to
use it. Our solution has been to use Bayesian Clausal Maps for representing the
knowledge and the dynamic extraction of rules for affecting the construction of
the tree during the construction of the tree itself.

The rest of the paper is organized as follows. Section 2 contains some back-
ground material on the classification process and on classification trees. Section
3 deal with spatial classification, with special attention to the phase of prepar-
ing the data for the induction step. Section 4 deals with the second approach,
in which the expert knowledge is used to drive a better construction of classifi-
cation trees in the area of assessment of business plans. The conclusions outline
some of the work going on that builds on the approach described here.

2 A Brief Overview on Classification Process

The aim of a classifier is to create a model capable of assigning a class to trans-
actions according to the values of (some of) their attributes. Usually, the input
is a table of tuples, where one of the columns is chosen as the class attribute. The
task is to build a model for predicting the value of the class attribute, knowing
only the values of the others.
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Many methods have been proposed in the literature for classification, such
as Bayesian classifiers [5,18,12], decision tree[15,14,2,11,10], and neural networks
[17,8]. We take into consideration decision tree models for their understand-
ability, and their robustness to noisy data, since this property is crucial in our
application contexts.

A decision tree is a tree data structure consisting of decision nodes and leaves,
where each decision node denotes a test over one of the attributes and the leaf
nodes represents one of the possible classification values. Unknown samples are
classified by testing their attributes against the decision nodes, and they are
assigned to the class corresponding to the reached leaf node.

The construction of a classification requires two separate phases.

– Learning phase. The tree is built using a training set, starting from a root
node and recursively splitting the data according to a statistical measure to
grow the subtrees of the root node. The decision tree classifiers proposed in
the literature can be distinguished according to the statistical criterion used
for dividing the data. For example CART [2] uses the Gini index, whereas
ID3 [14] and C4.5 [15] use the entropy to measure the (im)purity of the
samples.

– Test phase. The built tree is used to classify a set of known samples (i.e.
the test set) and, possibly, it is re-structured to improve prediction accuracy
and speed. The revision is based on statistical measures to remove the less
reliable branches. Such pruning task is performed using two main techniques:

• stopping methods : a tree is pruned by stopping its construction. For
example, a node can be prevented to be split if the value of the attribute
is below a threshold.

• post-pruning methods : the tree is pruned after it has been fully con-
structed. Some branches are removed by replacing a split node by a
leaf. This usually happens, for example, when the prediction error of the
pruned branch is not worse than the error of the unpruned tree.

Example 1 (ID3 Example). Consider the well known example presented in [14].
The input consists of a table containing a set of tuples that describe the en-
vironmental conditions suitable for playing (or not playing) tennis. In Table 1
the tuples have been ordered according to the attribute Outlook. Using the ID3
learning algorithm we may obtain the decision tree in Figure 1.

When a sample exhibits the set of attribute/value pairs in a path from the root to
a leaf, it is classified according to the class associated with the leaf. For example
the sample {Outlook=Rainy,Wind=Strong} is classified as No: the first attribute
selects the rightmost branch of the tree (Rainy); the second attribute selects the
left branch of the Wind decision node.

The decision tree for the example above is obtained by recursively splitting
the training set until all the samples (or the majority of the samples) in each
partition belong to the same class.
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Table 1. Training set of the Play Tennis example

Outlook Temperature Humidity Wind Class
Overcast Hot High Weak Yes
Overcast Cool Low Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Low Weak Yes
Rainy Cool Low Strong No
Rainy Mild High Strong No
Rainy Mild High Weak Yes
Rainy Cool Low Weak Yes
Rainy Mild Low Weak Yes
Sunny Hot High Weak No
Sunny Hot High Strong No
Sunny Mild High Weak No
Sunny Cool Low Weak Yes
Sunny Mild Low Strong Yes

Fig. 1. A decision tree obtained from the training set in Table 1

2.1 Selecting Best Split

The choice of the splitting attribute for each decision node is crucial for the
quality of the final decision tree. In fact, we aim at building compact decision
trees, by choosing at each decision node the attribute that reduces the “impurity”
of the samples the most. Moreover, the ID3 algorithm (like most decision tree
learning methods) adopts a greedy strategy: an attribute is chosen on the basis
of local measures and the alternative cases are not explored.

The criterion for the choice of the splitting attribute is based on the entropy
measure of the distribution of samples. At each decision node, the algorithm
chooses a possible attribute test with, say, n outcomes. The set S of the training
samples can be partitioned into subsets S1, . . . , Sn. The only information avail-
able to evaluate the test attribute is the distribution of the classes in each of
the subsets. The ID3 algorithm uses a statistical criterion, the information gain,
to quantify how well a test attribute splits the samples. From the information
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theory, the entropy is used to estimate the information brought by each subset,
by considering the probabilities that each class occurs in each partition.

If S is a set of samples and Ci is one of the possible classification values, we
denote with freq(Ci, S) the number of samples S that belong to class Ci. The
probability that a randomly picked sample in S will belong to a class Cj is given
by:

freq(Ci, S)
|S| .

Then, the information brought by this event is given by :

− log2

(
freq(Ci, S)

|S|

)
.

To determine the expected information conveyed by a set of samples S, the
information bound to the classes is summed up in proportion to their probabil-
ities:

info(S) = −
n∑

i=1

freq(Ci, S)
|S| × log2

(
freq(Ci, S)

|S|

)
where n is the number of the possible classifications. Intuitively, info(S) gives the
average information needed to identify the class of a sample in S. For example,
if S contains only samples belonging to a single class Ck then info(S) will be
zero, thus expressing the fact that each sample is univocally labeled by Ck.

When the samples in S are splitted according to a test attribute T with l
outcomes, the expected information of the splitting is measured as the weighted
sum of the information in each subset:

infoT (S) =
l∑

j=1

|Si|
|S| × info(Si)

where Si is the ith subset of the partition of S.
The information gained by partitioning S by means of the test attribute T is

given by
gain(T ) = info(S)− infoT (S).

The gain criterion is based on this measure and it selects the attribute that
maximizes this quantity. The strategy of choosing an attribute that maximizes
the information gain (and then minimizes the entropy) is justified by the observa-
tion that the splitting divides the data into smaller subsets, where the uniformity
of samples may increase.
The C4 5 algorithm works essentially as the ID3 does, but the splitting criterion
is based on the information gain ratio. The information gain ratio is the gain
normalized by the information due to the split of S on the basis of the testing
attribute:

gainRatio(T ) =
gain(T )

−
∑l

j=1
|Si|
|S| × log2

|Si|
|S|
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Example 2 (Information Gain). In the training set in Table 1 there are 14 cases,
nine of which are positive (Yes) and five are negative (No). The initial informa-
tion of the samples is:

info(S) = − 9
14
× log2

9
14
− 5

14
× log2

5
14

= 0, 9403

Once the samples have been divided according to the Outlook attribute we obtain
three subsets (one for each value of the attribute). The entropy of the samples
in each partition is:

info(S|Outlook=Overcast) = 0, 0000
info(S|Outlook=Rainy) = 0, 9709
info(S|Outlook=Sunny) = 0, 9709

Then the expected entropy of the split is:

infoOutlook(S) =
4
14
× 0, 0000 +

5
14
× 0, 9709 +

5
14
× 0, 9709

= 0, 6935

The information gain given by the attribute Outlook is:

gain(Outlook) = 0, 9403− 0, 6935 = 0, 2468

The attributes Humidity, Wind, and Temperature have a higher entropy (and
hence a lower gain) than the attribute Outlook. Thus Outlook is selected as the best
attribute for splitting and the root node is created accordingly. The growth of the
tree will continue in each of the three partitions to create the subtrees. Notice that
the partition relative to the value Overcast contains only Yes samples. In this case
a leaf is created to represent the class of the samples (see Figure 1).

3 Spatial Classification

In a GIS application, a spatial dataset consists of a set of layers, where each
layer brings the information on a particular aspect of the real world. What
characterizes a geographic region is the union of all the pieces of information
in all the layers. This way of organizing spatial data raises a new challenge
in defining a spatial transaction. In fact, a transaction is a tuple of attributes
brought together by all the layers and associated with a representative geometry
(i.e. the geometry where the tuple holds). In general, one of the available layers
is chosen as the reference layer, and each feature in this layer is used to select
the features in the other layers.

3.1 Spatial Transactions

Formally, let L = {L1, L2, . . . , Ln} be a set of layers, Lr be a reference layer, and
SR be a set of spatial relations. Each layer has a set of non-spatial attributes
that describe the state of each object in the layer. For the clarity of presentation,
we assume that each layer Li has only one categorical attribute attrLi . For each
object o ∈ Li the value of the attribute attrLi is given by the term o.attrLi .
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Dimensionally Extended 9-intersections Model. In order to rigorously
define the spatial relation between two geometries, we adopt the Dimensionally
Extended 9-intersections Model [4,?]. Given two objects embedded in a topo-
logical space, three sets of points are determined for each object: the interior
(denoted by ◦), the boundary (denoted by δ), and the exterior, or complement
(denoted by −).

It is possible to determine the spatial relation between two geometries A and
B by considering all the possible intersections, actually 9 intersections, among
the three sets of points associated to both A and B. For each intersection we
consider the dimension of the intersection itself. In particular, given a set S, the
dimension of S is given by the function dim(S):

dim(S) =

⎧⎪⎪⎨⎪⎪⎩
− if S = ∅

0 if S contains at least a point and no lines or areas
1 if S contains at least a line and no areas
2 if S contains at least an area

The spatial relation R(A, B) is given by the following 9-intersection matrix :

R(A, B) =

⎛⎝ dim(δA ∩ δB) dim(δA ∩B◦) dim(δA ∩B−)
dim(A◦ ∩ δB) dim(A◦ ∩B◦) dim(A◦ ∩B−)
dim(A− ∩ δB) dim(A− ∩B◦) dim(A− ∩B−)

⎞⎠
Materializing Spatial Transactions. The selection of the transactions within
a GIS dataset can be performed by the application of some basic GIS operations.
In this section we present the basic operations involved for materializing a set
of spatial transactions.

Select by value. Given a layer L = {f1, f2, . . . , fn} and a value v of the categorical
attribute of L, the operation selects all the features in L whose value is v.

select(L, v) = {fi ∈ L|fi.attrL = v}

Group by value. The natural extension of the select-by-value operation is the
clustering of features in the layer according to all the possible values of the
categorical attribute.

group-by-value(L) = {select(L, v1), . . . , select(L, vl)},

where v1, . . . , vl are all the possible values of the categorical attribute. A typical
example of this operation is presented by many GIS viewer applications: each
feature in the layer is colored according to the value of one of its attributes.

Select by relation. The operations presented so far consider only the non-spatial
attributes of the layer. We consider now the spatial extension of the features by
exploiting it for selecting a set of objects in the neighborhood of a given feature:

select-by-relation(f, L, R) = {fi ∈ L|R(f, fi)holds}
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Although it is not necessary, we assume that the reference feature f does not
belong to the layer L, by considering layers that do not contain self-overlapping
features.

Layer join. The select-by-relation operation can be extended to the case of two
layers by iterating the selection process for each feature in the reference layer.
In details:

layer-join(L1, L2, R) = {〈f1, F2〉|F2 �= ∅,
F2 = select-by-relation(f1, L2, R), ∀f1 ∈ L1}

The result is a set of pairs, where each pair contains a reference feature of
the first layer and the set of features selected in the second layer. When the
selection-by-relation is empty, the pair is not included in the resulting set.

To generate the set of spatial transactions, the operation can be easily ex-
tended to the case of n+1 layers, where the first layer is used as reference layer:

layer-join(Lr , L1, . . . , Ln, R) = {〈fri, F1i ∪ · · · ∪ Fni〉|Fij �= ∅,
Fij = select-by-relation(fri, Lji, R), ∀fri ∈ Lr, j = 1, . . . , n}

So far we have considered a generic set of spatial relations to drive the extrac-
tion of the spatial transactions. However, the set of relations can be organized
in a hierarchy. In this way, the spatial transactions can be generated at different
levels of details. For example, when aggregating specific relations into a coarser
relation, the select-by-relation operation may return a single selection rather
than a multi selection (since many objects selected by similar relations will form
a unique multi-object). The opposite process, i.e. the use of more specific re-
lations, produces a large number of multi selections. The generation of spatial
transactions can also be driven by the hierarchies of concepts. Like the spatial
relations, the attribute values of each layer may be used to group similar objects
together. For example, the hierarchy of a road layer may consider the object
at different layer of details: the single road (e.g., A11, A4), the road type (e.g.
highway, motorway), and so on.

The choice of the relation(s) in the above operations is a matter of expert
choice. In the experiments performed so far, such choices have been performed
directly by the data miner during the process of data preparation for the induc-
tion phase. One of the objective we are pursuing now is the derivation of such
choices from background knowledge coded in a domain ontology.

3.2 Spatial Decision Trees

Our goal is to build a decision tree capable of assigning an area to a class, given
the values of the other layers with respect to the area. Like in transaction classifi-
cation, we follow two steps: first, we build a model from a set of samples, namely
a training set ; then, we use the model to classify new (unseen) areas. The training
set is determined by the spatial transactions extracted from the dataset.
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(a) A sample SDT (b) A new sample to classify

Fig. 2. A possible spatial decision tree

Definition 1 (Spatial Decision Trees). A Spatial Decision Tree (SDT) is
a rooted tree where (i) each internal node is a decision node over a layer,(ii)
each branch denotes an outcome of the test and (iii) each leaf represents one
of the class values. A decision node ni is associated with a layer Li and with
the attribute Xi of the layer. The outcoming edges are labeled with the possible
values of Xi.

3.3 SDT Classification

An area A is classified by starting at the root node, testing the layer associated
with this node and following the branch corresponding to the test result. Let
x1, x2, . . . , xm be the labels of the m edges of the root node. If A is related to
an object of type xj in the layer associated with the root node, then the edge
labeled with xj is followed. This testing process is repeated recursively starting
from the selected child node until a leaf node is reached. The area A is classified
according to the value in the leaf. When the query region A relates to several
areas with distinct values, then all the corresponding branches are followed.
The area A is split according to the layer values and each portion is classified
independently.

Example 3. In Figure 2(a) a spatial decision tree for the example in Figure 2(b)
is presented. This decision tree classifies areas according to whether they are
suitable for a type of crop rather than another. In particular, in this example
we have three kind of crops: Corn, Tomato and Potato. Given a new instance s
(marked with s in Figure 2(b)), we test s starting from the layer associated with
the root node, i.e. the Water layer. Since s overlaps –the kind of relation chosen
in this case– a water region whose value is Poor, the corresponding branch is
followed and the node associated with the Climate layer is selected. Thus, s is
tested against the features in the Climate layer: in this case it overlaps a Sunny
region, so the class Corn is assigned to the instance s.
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3.4 SDT Learning Algorithm

Spatial transactions are extracted from the set of layers by first selecting a
reference layer, i.e. the layer with the attribute chosen as the classifier, then
by relating the objects in the other layers via the spatial relation layer-join
discussed in Section 3.1.

Following the basic decision tree learning algorithm [14], our method [16]
employs a top-down strategy to build the model. Initially, a layer is selected
and associated with the root node, using a statistical test to verify how well it
classifies all samples. Once a layer has been selected, a node is created and a
branch is added for each possible value of the attribute of the layer. Then, the
samples are distributed among the descendant nodes and the process is repeated
for each subtree.

The crucial point of the algorithm is the selection of the split layer for the
current node. In Section 3.6 a strategy based on the notion of entropy is presented
to quantify how well a layer separates samples. As we see later, the use of the
spatial measure (i.e. the aggregate area) is crucial here. Once a layer is selected
for a test node, the spatial transactions are partitioned according to the layer
itself and the associated spatial relation. In Section 3.5 we show how to compute
this partition.

3.5 Splitting Spatial Transactions

We aim at grouping spatial transactions according to the categorical attribute
of the layers. We select a layer Li and we split the transactions according to this
layer. In general, if layer Li has q possible values then it can split the samples
in q + 1 subsets, i.e. a subset for each value vj ,j = 1, 2, . . . , q, and a special
subset corresponding to none of these values (termed ¬L(C)). The choice of
the attribute to use for the split is crucial for the quality of the learned model.
In the next section we discuss how to choose such an attribute among all the
candidates. An example of splitting the transactions according to the Water
layer and the overlap relation is presented in Figure 3.

3.6 Selecting the Best Split

In this section we introduce a statistical measure, the spatial information gain,
to select a layer that classifies training samples better than the others. The
information gain is based on the notion of entropy.

Spatial Information Gain. We present now the method to compute the en-
tropy for a layer L, with respect to the class label layer S. First, we evaluate the
entropy of the samples, i.e. the information needed to identify the class of a spa-
tial transaction. While in tuple-transaction the frequency of a sample is expressed
as a ratio of transaction occurrences, we use here the spatial measure of the sam-
ples. In order to maintain the presentation clear, we assume that all the samples
are polygonal object and we use the aggregate area to measure their extents. The
method is easily extensible to other spatial dimensions (i.e. lines, points).
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Fig. 3. Samples splitted according to the Water layer

Thus, given a set of spatial transactions L, we denote with mes(L) the sum
of the areas of all polygons associated with the transactions in L. If the set of
samples S has l distinct classes (i.e. c1, c2, . . . , cl) then the entropy for S is:

H(S) = −
l∑

i=1

mes(Sci)
mes(S)

log2
mes(Sci)
mes(S)

(1)

Given a layer L with values v1, v2, . . . , vq, we split the spatial transactions
according to the values of this layer, as showed in Section 3.5. We can figure out
the result of the splitting as a set of transaction L(vi, S) for each possible value
vi in L and, possibly, ¬L(S). From equation (1) we can compute the entropy for
samples in each set L(vi, S). The expected entropy value for splitting is given
by:

H(S|L) =
mes(¬L(S))

mes(S)
H(¬L(S)) +

q∑
j=1

mes(L(vj , S))
mes(S)

H(L(vj , S)) (2)

The set ¬L(S) represents the transactions that can not be classified by the
layer L (i.e. the samples not related with the layer L).
The spatial information gain for layer L is given by:

Gain(L) = H(S)−H(S|L) (3)

Clearly, the layer L that presents the highest gain is chosen as the best split :
we create a node associated with L and an edge for each value of the layer. The
samples are split among the edges according to each edge value. The selection
process is repeated for each branch of the node by considering all the layers
except L.
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4 Classification of Business Plans

In real applications is not always enough to use the data coded into tables to
extract a model that well describes the problem at hand. Quite often there is
other knowledge around, that can usefully complement the one hidden inside the
examples.
The problem we are addressing is how to build a classification tree taking into
account a set of examples (table) and the knowledge proper of the domain of
interest, the one owned by the experts in the field (background knowledge).

4.1 Background Knowledge

The background knowledge is represented by a network of dependency rela-
tionships via Bayesian Causal Maps (BCM). A BCM is a directed graph that
connects concepts via a cause-effect relation. In this kind of graph, arcs connect-
ing related concepts are associated to a probability measure of the strength with
which these concepts are related. Bayesian Causal Maps (BCMs) are obtained by
merging Causal Maps [6,9], which are used to represent the human way of think-
ing, and Bayesian Networks [12]. Causal maps include relationships expressed in
the form of believes, values and perceptions held by individuals. Causal Maps are
useful to represent a simplification of the reality, to highlight the most important
elements to solve a specific problem, and to identify each possible alternative.
These points are useful when we are interested in pointing out the cause-effect
relationships among the variables belonging to the application domain. Causal
Maps are also called Dependence Maps (D-MAP) because they guarantee that
connected concepts are dependent. A Bayesian network model can be seen both
as a qualitative and a quantitative model. At the qualitative level, the model is
represented as a directed acyclic graph in which each node represents a variables
and each arc represents a probabilistic dependence. The lacking of an arc from a
node to another node means that the two nodes are conditionally independent.
This is the reason why Bayesian Networks are also called Independence Maps
(I-Map). At the quantitative level the influence relations among the variables
are expressed as conditional probability distributions.

Our aim is now to use this knowledge to drive the construction of a classifica-
tion tree. To this purpose, we extract from the map a set of rules, which we call
domain rules, and we use those rules to change the probability measures used in
the entropy computation.

4.2 Domain Rules

Starting from the representation of domain knowledge as a BCM, we are able
to identify and extract rules such as: L

pi−→ R, which means that when the left
hand side L holds, then the right hand side R holds with a probability pi. The
left hand side of a rule can be:

- an element Attribute-relation-value, e.g. A = a, which refers to a direct
connection (Fig. 4(a)) (simple rule);
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- more than one element Attribute-relation-value, each of which refers to
a direct connection (Fig. 4(c)), e.g. A = a ∪ C = c (complex rule);

- an element Attribute-relation-value which refers to an indirect connec-
tion (Fig. 4(b)), e.g. A = a‖C=c (indirect simple rule);

- more than one element Attribute-relation-value, each of which refers
to a combination of direct and indirect connections (Fig. 4(d)), e.g. A =
a‖D=d ∪C = c (indirect complex rule).

Fig. 4. Fragments of BCMs

The right hand side of the rule always contains a single element Attribute −
relation − value. Figure 4 shows one example for each of the cases reported
above. Figure 4(a) shows the fragment of a BCM from which it is possible to
derive the simple implication A = a

p−→ B = b that states that when A is equal
to a then B is equal to b with a likelihood of p. Figure 4(b) shows a fragment
of a BCM from which it is possible to extract the extended simple implication
A = a‖C=c

px−→ B = b. This rule states that it is possible from A = a to say
something about B being equal to b only passing through C = c. This is obviously
possible only when we do not know anything about the value associated to C.
Suppose to know that C = c then from A = a we cannot deduce anything
about C because C is already known. The same thing would have happened if
we had known that C was equal to c1. Hence extended implications are a way
of connecting attributes not directly connected. Then the likelihood associated
to these rules will be dependent on the likelihood of both the connections and
it will be smaller than that associated to each connection (e.g. p4 and p1 with
respect to Figure 4(b)).

From the fragment of Figure 4(c) it is possible to extract the complex im-
plication A = a ∪ C = c

py−→ B = b. In this case we have a right hand side
(B = b) that directly depends on two other elements. These kinds of rules can
be extracted only if the value of both the attributes in L (A and C) are known
to be equal to that reported in the BCM for these attributes. If only one of the
attributes verifies this requirement, a simple implication will be extracted. The
likelihood associated to complex implications will be greater than that of each
connection starting from a node in L.

Figure 4(d) shows a fragment of a BCM from which it is possible to extract
the indirect complex implication A = a‖D=d ∪ C = c

pz−→ B = b. In this kind of
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rules the concepts expressed for extended and complex implications are merged.
Roughly speaking they are complex implications on the right hand side of an
extended rule.

From the things said so far, it follows that the map is a dynamic entity,
and that the rules that can be extracted depend both on the attribute value
associated to the current sub-tree root node and on the path followed from the
root to reach the sub-tree root node. For any further detail in the extraction of
domain rules, refer to [1].

4.3 Probability Computation

The likelihood associated to simple implications is, trivially, the value of the
influence relationship between the nodes involved in the rule. According to Fig-
ure 4(a) the likelihood is p.

When dealing with extended implications we have to consider that this kind
of rules can be extracted only if we know nothing about “the node in the middle”
of the implication. Hence the likelihood associated to this kind of rules is the
product of the influence relationships, which is p4× p1 according to Figure 4(b).
More complex tasks are related to the computation of complex rules probabil-
ities. Consider, for example, Figure 4(c). What we want to determine is the
probability that B = b, knowing that A = a and C = c. Hence we have to
consider the independent events E1 = (B = b|A = a) and E2 = (B = b|C = c).
Since both of the events have to be considered (the map tells us that the truth
of B = b depends on both of them) we have to compute the probability of the
union of the events: P (E1 ∪E2) = P (E1) + P (E2)− P (E1 ∩E2). Being E1 and
E2 independent in the current instantiation of the map, we can compute the
intersection of the events as the product of the probabilities associated to the
events, obtaining p+p1−p×p1 as the likelihood associated to this complex rule.
This way of reasoning can be extended to more than two complex implications.

For indirect complex implications both the computation of the indirect rule
probability and the computation of complex rules probability are merged. Ac-
cording to Figure 4(d) the likelihood associated to the indirect complex rule is
(p2 × p3) + p1 − (p2 × p3)× p1.

The probability associated to these rules will be used to modify the entropy
estimation, which drives the choice of the next node during the construction of
the tree.

4.4 Attribute Selection and Domain Rules

The probability expressed by the rule will be used to replace the coefficient |Si|
|S|

in the equation for the entropy computation. Consider the Table 2, related to
the subset we are investigating to find the tree next best node, and the rule
R : A = a

p−→ C = cj .
We replace the coefficient |Sj|

|S| (where 1 ≤ j ≤ n and j denotes the attribute
value specified in the rule) with the rule probability. This value, in fact, means
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Table 2. A table fragment

A B C ...
a b c ...
a b c ...
a b c ...
a b c ...
a b1 c1 ...
a b1 c1 ...
a b1 c1 ...
a b2 c1 ...
a b3 c2 ...
a b c2 ...

that there is a different distribution for the attribute values cj with respect to
the one expressed in the data set. The remaining values ( |Si|

|S| where i �= j), that
do not occur in the rule, are modified according to the data set values. By using
the rule R, the formula to compute the expected information of the splitting of
S with respect to a chosen attribute becomes:

InfoC(S) = p
(
Info(C = cj)

)
+ (1− p)

n∑
i=1,i�=j

( |C = ci|
|S| − |C = cj |

)
Info(C = ci)

When computing the entropy, S identifies the subset of the data set in which we
are considering the attribute C, while C = cj identifies the value of the attribute C
for which the rule holds. Hence, we compute the entropy associated to the attribute
C by modifying the coefficients associated to its values. The coefficient associated
to the value cj becomes p (the probability associated to the rule), while the ones
related to the other values for C are computed according to the probability measure
(1− p) proportionally distributed on the remaining instances.

Example 4. Consider the following instantiation of the rule R

R: A = a
p=0.3−−−−→ C = c

and the Table 2 as our running example. We compute (1 − 0.3)4
6 for the value

c11, and (1− 0.3)2
6 for the value c2 of variable C. Hence the formula becomes:

Info(C|A = a) = 0.3Info(C = c) + 0.7
4
6
Info(C = c1) + 0.7

2
6
Info(C = c2)

4.5 A Concrete Example

In order to keep the example manageable, we refer to a concrete but very simple
case. Consider the set of supermarket transactions taken from the file coop.arff,
and the BCM in Figure 5:
1 Value c1 occurs four times and there are six values for C not equal to c.
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Fig. 5. Bayesian Causal Map

Fig. 6. Tree built using domain rules

Fig. 7. Tree built in the usual way

From the map we extract the rule R : chicken = no
p=0.95−−−−→ zucchini = yes,

if chicken is selected as root of current (sub)tree.
The tree obtained by the application of the domain rule is shown in figure 6

and as one can notice, differs from the one produced by applying the C4.5 algo-
rithm2, shown in picture 7, starting from the fourth node from the root.

Considering the execution of C4.5 algorithm, the attribute “beer” results to
be the attribute with lower entropy than the others, and its entropy value is the
following:

2 Weka J48 implementation of the algorithm.
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Info(beer|chicken = n) = 0 +
18
20

(− 7
18

log2
7
18
− 11

18
log2

11
18

) = 0.88.

By using the domain rule, the node below on the path where “chicken =
n”, becomes “zucchini” instead of “beer”. In fact its entropy value changes and
decreases from

Info(zucchini|chicken = n) =
4
20

(−1
4
log2

1
4
− 3

4
log2

3
4
)+

+
16
20

(− 6
16

log2
6
16
− 10

16
log2

10
16

) = 0.93

to

InfoR(zucchini|chicken = n) = 0.95(−1
4
log2

1
4
− 3

4
log2

3
4
)+

+0.05(− 6
16

log2
6
16
− 10

16
log2

10
16

) = 0.82,

The gain ratio with respect to the attribute beer is 0.13681, and the one with
respect to zucchini considering the domain rule is 0,2864.

Consider now the subset of instances related to the subtree, the root of which
is labeled by the attribute chosen by the application of the domain rule R. If
there are no rules related to any attribute in that subset, the computation goes
on as usual, by calculating the entropy without using external knowledge, and
having the node chosen by the algorithm itself. If there are rules related to the
attributes in that subset, the computation will take into account these rules. It
is worth noting, that the same choice could be made by both the algorithms,
also in the presence of domain rules.

As discussed in the introduction, the application that lead us to the modifica-
tion of the algorithm for the construction of classification trees by the exploita-
tion of expert knowledge was the need of classifying innovation plans. In the
discussions with our colleagues of the economic school it quickly came out that
the data of the innovation plans were really significant only when interpreted in
the context of general knowledge about innovation in companies.

For business documents the experts supplied six macro categories.

1 Company managers and management systems: it contains information about
the company managers (i.e. the age, the level of studies and so on) and
about the company organizational systems (i.e. the existence of a budgeting
process, the existence of a reporting systems and so on).

2 Commercial dimension: it contains information about the reference markets,
the relationship between the company and the customers and the know how
of the person in charge of sales.

3 Technical-productive dimension: it contains information on production agree-
ments, patents, employer skills, skills of the person in charge of production
and product design, and the degree of the equipment novelty.

4 Environment caring: it contains information about the geographical concen-
tration and the infrastructures of the company.
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Fig. 8. Fragment of the BCM provided by the experts

5 Competitors analysis: it contains information about providers, customers,
potential customers, and competitors.

6 Economical-financial analysis: it contains information about the financial
and economic structure, and the income of the company.

The economic model that forms the domain knowledge (BCM), consists of a
set of weighted influence relations among items. Each relation regulates the
dependency between items, and the weight (probability measure) expresses the
strength of the relation.

A typical example of general knowledge elicited from the experts is represented
by the fragment of map in fig. 8, where

Age. The attribute Age contains information regarding the age of all the man-
agers;

PropTotH. Contains the percentage of the working hours devoted to meetings,
product quality checking, and so on;

ManSystem. The attribute ManSystem contains information regarding the
company management system;

crcMasterDegree. The attribute crcMasterDegree indicates if the person
in charge of commerce has got a master degree;

MasterDegree. The attribute MasterDegree refers to the percentage of the
company manager with a master degree;

Skills. The attribute Skills contains information regarding the experience (both
practical and theoretical) of the management;

PatentsNumber. The attribute PatentsNumber contains information re-
garding the number of patents owned by the company.

5 Conclusions

Classification is one of the most useful techniques for solving application prob-
lems, where a new situation has to be understood. The basic solution consists
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in constructing a classifier by inducing a model (e.g. a classification tree) out of
a number of already classified cases, and to use it for classifying new cases. The
classification methods work well in well structured domains, where the cases
can be neatly described via a number of well understood attributes. As soon
as one attempts to apply classification methods to domains where the informa-
tion is not that neatly organized, matters become more complex. This paper
reports on two experiences, where such difficulties clearly came out and on how
we addressed them. Apart from the specific solutions we found for addressing
business documents on one side and geographical information systems on the
other, we maintain that the general lesson we learned is that pure induction
out of known examples is not enough in such complex applications. The way
out we found is the exploitation of some form of expert knowledge, that, by
enriching the information of the examples with background knowledge, allows
us a better classification. We found that domain knowledge can be exploited
in different phases of the construction of the classifier. When dealing with geo-
graphical information systems we found it useful to exploit it in the preparation
of data, while in the context of business documents we found it useful to drive
the construction of the tree. What is still unsatisfactory is the way expert knowl-
edge is represented and our current goal is to find a methodology for addressing
this aspect. The solution we are looking at, also in the context of three euro-
pean projects we are working in (GeoPKDD [7], BRITE [3], MUSING [13]), is
to derive the technical representation of knowledge from general ontologies, de-
scribing the application context. For example, the knowledge about the proper
relations we need to use for extracting transactions from GIS can be driven by
general descriptions of the geographic objects and their hierarchies. The knowl-
edge behind either a balance sheet or a business plan can be coded, and it is
being coded within the aforementioned projects, in proper ontologies. Bayesian
causal networks can then be automatically extracted. In summary, the lesson we
learned is that both the expert system approach, that underlies current onto-
logical research, and the machine learning approach, that underlies current data
mining approach, can contribute, when properly integrated, to the solution of
complex application problems.
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Abstract. The rapid deployment of low-cost ubiquitous sensing devices
– including RFID tags and readers, global positioning systems, wireless
audio, video, and bio sensors – makes it possible to create instrumented
environments and to capture the physical and communicative interaction
of an individual with these environments in a digital register. One of the
grand challenges of current AI research is to process this multimodal
and massive data stream, to recognize, classify, and represent its digital
content in a context-sensitive way, and finally to integrate behavior un-
derstanding with reasoning and learning about the individual’s day by
day experiences. This augmented personal memory is always accessible
to its owner through an Internet-enabled smartphone using high-speed
wireless communication technologies. In this contribution, we discuss how
such an augmented personal memory can be built and applied for pro-
viding the user with context-related reminders and recommendations in
a shopping scenario. With the ultimate goal of supporting communica-
tion between individuals and learning from the experiences of others, we
apply this novel methods as the basis for a specific way of exploiting
memories – the sharing of augmented personal memories in a way that
doesn’t conflict with privacy constraints.

1 Introduction

The rapid deployment of low-cost ubiquitous sensing devices – including RFID
tags and readers, global positioning systems, wireless audio, video, and bio sen-
sors – makes it possible to create instrumented environments and to capture
the physical and communicative interaction of an individual with these environ-
ments in a digital register. One of the grand challenges of current AI research
is to process this multimodal and massive data stream, to recognize, classify,
and represent its digital content in a context-sensitive way, and finally to inte-
grate behavior understanding with reasoning and learning about the individual’s
day by day experiences. If we add the clickstream history, bookmarks, digital
photo archives, email folders, calendar, blog and wiki entries of an individual,
we can compile a comprehensive infrastructure that can serve as his augmented
memory. This personal memory is always accessible to its owner through an
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Internet-enabled smartphone using high-speed wireless communication technolo-
gies. We have realized a broad range of augmented memory services in our system
Specter (see, for instance, [15], [25], [21], [20], and [3]).

Ever since ancient times, storytelling has been a way of passing on personal
experiences. The selective sharing of personal augmented memories is the modern
counterpart of storytelling in the era of mobile and pervasive internet technology.
In our SharedLife project, we are creating augmented episodic memories that
are personal and sharable. The memory model does not aim at a simulation of
human memory. Instead we are realizing an augmented memory in an unintrusive
way, that may contain perceptions noticed by Specter but not by the user.

Although some researchers believe that it is feasible to store a whole human
lifetime permanently, we are currently concentrating on a less ambitious task.
We try to record and understand an individual’s shopping behavior for a few
days and share relevant experiences with others in a way that doesn’t conflict
with his privacy constraints. Dealing with shopping experiences is a limited,
but meaningful task against which we can measure progress on our augmented
memory research.

2 Related Work on Augmented Memories and Knowledge
Sharing

The building of augmented personal memories in instrumented environments
for the purpose of extending the user’s perception and recall has been studied
for more than 10 years (see, e.g., [17]; [9]). While this research has focused on
user interface design for the retrieval of memories (among others, [8]; [1]), other
research has looked into ways of processing the contents of such memories so as
to increase their accessibility to their owner (see, e.g., [12]; [7]).

The exploitation of augmented memories has been researched for diverse sce-
narios. For instance, work conducted in the E-Nightingale project shows how
automatically created nursing records may help to avoid medical accidents in
hospitals (cf. [16]). How RFID technology and Web mining can be applied to
support the user with everyday activities is discussed in [19]. In the project Liv-
ing Memory [23], records of people’s activities and access to community-related
information are automatically processed in support of community-related behav-
ior in relatively complex ways. An example of how memories can support social
matching is offered by the system AgentSalon (see, e.g., [24]). The system uses
experience logs of participants in an academic conference in order to stimulate
conversation via rather extraordinary means, involving animated characters.

3 Personalized Assistance in Mixed-Reality Shopping

Today, the retail industry introduces sensor networks based on RFID technol-
ogy for advanced logistics, supply chain event management, digital product
memories, innovative payment systems, and smart customer tracking, so that
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Fig. 1. A typical action sequence from a shopping scenario explored in Specter

shops turn into instrumented environments providing ambient intelligence. In-
strumented shopping environments like the METRO future store or the exper-
imental DFKI Cybershopping mall support mixed-reality shopping, which aug-
ments the usual physical shopping experience with personalized virtual shopping
assistance known from some online shops. Currently, our DFKI installation in-
cludes three small shops with instrumented shelves: a grocery store, a camera
and phone shop, and a CD shop.

Up to now, such instrumented shopping environments provide more benefits
to the supplier than to the customer. Our research is aimed at exploiting the
networked infrastructure for more personalized shopping assistance like digital
shopping list support, automatic comparison shopping, cross- and up-selling,
proactive product information, and in-shop navigation. The combination of ad-
vanced plan-recognition techniques with augmented memory retrieval is a pre-
requisite for the generation of user-adaptive cross-selling and up-selling recom-
mendations. For example, the system, recognizing that the customer is picking
up the usual ingredients for lasagna, may recommend a discounted Italian red
wine from Tuscany — a wine similar to one the customer enjoyed some time be-
fore but has since forgotten. Such personalized services make sure that shoppers
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get the best value. In this way, they are compensated for the risk of losing some
privacy in instrumented shops.

Fig. 1 illustrates the use of augmented memory functions for automatic com-
parison shopping in a mixed-reality environment. The user wants to buy a new
cell phone. At home, he searches the internet for new models. Our augmented
memory service tracks the user’s browsing behavior and stores the result in his
personal journal. When the user decides to check the physical look and feel
of the selected phone in a real shop, he can exploit various augmented mem-
ory functions using his internet-enabled PDA. As soon as he grasps a phone
from the instrumented shopping shelf, Specter generates a comparison ta-
ble of the features for this particular phone and the best-rated phone that the
user found during his preparatory internet search. This is a typical instance of
mixed-reality shopping, since the tangible experience with physical products is
related to virtual shopping experiences through web browsing. When the user
decides to buy a cell phone and puts it in the instrumented shopping basket,
this event is recorded in the personal journal together with temporal and spa-
tial information. Later at home, the user of Specter can review his digital
diary and reflect about his shopping behavior, including entries about which
products he has found on the web, which products he has checked in the in-
strumented shop without buying them, and which products were compared with
each other.

The user of the DFKI Cybershopping mall can also look for audio CDs, in
particular for soundtracks. People come in contact with soundtracks through
various situations — e.g., in a cinema with the family, while watching a DVD
at home, or while browsing an Internet store. Sometimes they have a precise
idea of the music in question, and sometimes, they have never heard it. This
background serves as the scenario in which a user exploits augmented memories
by means of Specter in order to learn more about soundtracks that might be
of interest.

The left side of Fig. 2 shows the user looking at a RFID-tagged CD, which
she has grasped from the instrumented rack. The right side shows a screenshot
from her PDA, which she is holding in her left hand to access the augmented
memory services. Specter’s personal journal shows that “The Lion King” has
been explicitly evaluated by the user (the journal entry is labeled “Classifying”)
leading to the highest possible rating, visualized on the PDA screen as two
thumbs up. For the “Stallion of the Cimarron”Specter notes that the user has
grasped this CD and then checked a weblink that is automatically offered on the
PDA to provide proactively additional product information (the journal entry is
labeled “Looking in detail”).

In order to actively acquire information about the soundtracks, our user can
first browse the Web pages of an Internet store. Specter unobtrusively records
these actions and assigns to each CD examined by the user a subjective rating
based on the user’s attention (for more details, see Fig. 8). While shopping, the
system provides a listing of services related to the CDs being considered based
on situational preferences. For instance, if she is in her favorite shop and has
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Fig. 2. Creating a personal journal in Specter

spare time, the system may inform her of special offers on similar CDs. The user
may exploit her augmented memories in several additional ways. For instance, if
a CD is unknown to the user, the system may provide a list of similar CDs known
by means of augmented memories, and thus provide a clue about its content.
The other way around, the user can tell Specter to provide some examples
of CDs she likes to the shop in order for them to suggest similar CDs as yet
unfamiliar to her. All these actions contribute to her augmented memories and
may therefore later become the subject of reflection and introspection.

Humans have memories filled with their experiences. But as an alternative to
acquiring experiences on their own, humans often share memories with others
(e.g. actively by telling stories or, more modernly, by blogging, passively by
watching movies or reading autobiographies and test reports). Given augmented
memories created on the basis of observations in instrumented environments and
given several users with such memories based on our Specter software, the key
research question of our SharedLife project is: Can we reproduce the natural
exchange of memories to some degree to enrich the memories of individuals and
support their activities?

Fig. 3 illustrates a first version of the SharedLife system used in our instru-
mented CD shop. The user’s behavior, his ratings and past choices are captured
in his augmented memory (see step 1 in Fig. 3). This personal memory can be
used for a combination of reminding and recommendation, which we call “re-
comindation” (see step 2 in Fig. 3). The system reminds the user that he had
listened to the soundtrack of “Toy Story” while he was watching the DVD with
friends on the 1st of March 2005 at noon. In addition, it recommends to buy the
CD, since the augmented memory includes a very favorable personal rating of
this soundtrack. The user can publish parts of this shared memory after enter-
ing it in his ubiquitous user model (see step 3 in Fig. 3). He can specify privacy
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Fig. 3. Sharing augmented personal memories

constraints, so that a selective sharing of the augmented memories becomes pos-
sible. For instance, the access to the excellent rating of this soundtrack by the
user may be denied for commercial use, but granted for research purposes only
(see step 4 in Fig. 3).

4 From Sensor Data to Memories

The first step towards the creation of augmented memories is the automated
recording of contextual information as perceived from various types of sensors.
In our example scenario, each CD is an RFID-tagged smart object, which al-
lows tracking its presence within the store areas (shelf, basket, cashier). Option-
ally, these objects may be anthropomorphized in order to facilitate the human-
environment communication (cf. [25]). The user’s location may be determined
using IR, RFID, and/or GPS (see [6]). Biosensors (e.g., electrocardiogram (ECG)
electromyogram (EMG), electrodermal activity (EDA), and acceleration (ACC)
sensors) provide further information about the user’s state, which is applied
for choosing an appropriate communication channel and for automatically eval-
uating events (cf. [5]). Finally, Web services allow the system to acquire rich
context information (e.g., the current weather or important events from RSS
feeds), which may later on serve as an access key to the memory. In addition,
such services are used to realize certain domain-specific features within the user’s
environment. For instance, Specter assists its user with services implemented
by [2], such as a similarity search for CDs.

Each of these input sources is linked to a so-called RDF store (see [21]). Such
a store provides an RDF-based interface to a sensor-specific memory, which is
decoupled from the user’s augmented memories. Two advantages provide the
rationale for this separation:

Efficiency: sensor memories are not bound to Specter’s RDF-based implemen-
tation of the augmented memory. This is of special interest due to the diversity
of the perceived data, which may range from raw mass data of biosensors to rich
information retrieved from Web services. For the same reason, sensors may im-
plement their own abstraction methods — e.g., a simple mapping is performed
in order to translate GPS coordinates into semantically meaningful locations,
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Fig. 4. Building memories from perceptions in Specter

whereas input from biosensors is processed on a mobile system by means of
dynamic Bayesian networks.

Flexibility: for various reasons, the connection between the augmented memory
and some sensors may sometimes be lost (e.g., technical issues, trust issues). In
such a case, the user should be allowed to complete the augmented memories at
a later time using records from the sensors’ memories.

4.1 Modeling Perceptions

Sensors provide the system with perceptions; their RDF-encoded content contains
simple statements such as “user reaching shelf” or “user holding CD”. At any
given point of time, the set of all available sensors’ latest perceptions defines the
context of an event in Specter.

Information contained in perceptions references an ontology based on the
IEEE SUMO and MILO [18]. The user’s state is modeled using the general
user model ontology (GUMO, cf. [11]), a mid-level ontology which provides
applications with a shared vocabulary for expressing statements about users.
Furthermore, in order to facilitate the exchange of GUMO statements between
different applications, the ontology provides a means of combining such state-
ments with meta statements, e.g., about privacy, trust, and expiry issues. GUMO
statements reference a variety of dimensions that describe user properties. Their
basic dimensions include contact information, personality, and emotional
state. These concepts are the topmost level of a broad range of specialized con-
cepts. The complete ontology can be reviewed and edited online with an ontology
browser provided at http://www.gumo.org/.

4.2 The Abstraction Pipeline of Specter

In order to describe how perceptions are processed and stored we have developed
a memory model (see Fig. 4). In this model, incoming perceptions are stored in
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Fig. 5. An abstraction process is performed in order to gain symbolic information from
raw sensor data

a short-term memory, which serves two main purposes. First, it is of special
relevance for the recognition of situations and thus situated user support. The
facts stored in the short-term memory model the user’s current context; a BDI
planner (JAM, cf. [13]) matches this context against patterns of service bindings
specified in the user model (more about this in the next section). The second
purpose of the short-term memory is to trigger, based on events and event chains,
the construction of episodes in the long-term memory.

Our approach to a long-term memory for intelligent environments is two-
fold. First of all, perceptions are stored in a context log without further change.
This log works primarily as the system’s memory. It is linked to the personal
journal, which consists of entries representing episodes created from one or more
perceptions. For instance, the perceptions “user holding A” and “user holding
B” can be combined to the episode “user comparing A and B”. The creation of
journal entries is an abstraction process, which is performed using pre-authored
rules expressing commonsense knowledge and domain knowledge.

Fig. 5 illustrates the abstraction pipeline realized in Specter. The stream
of raw level sensor data is first classified, so that basic motion data can be
derived (compare the bottom of Fig. 5). The results of RFID readers can be
abstracted to the observation that a certain product has been removed from a
particular shopping shelf and put into an instrumented shopping basket. This
can be further abstracted to an intended purchase of this product. If the shopper
has already put pasta sheets, chopped tomatoes, and beef in his basket then the
plan recognition mechanism of Specter will generate the hypothesis that the
user wants to prepare a lasagne. When an additional plan for preparing tiramisu
is recognized and a 12-bottle box of chianti wine is bought, Specter may classify
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the situation on the highest level of abstraction as“shopping for an Italian dinner
party” (compare the top of Fig. 5).

The grocery shopping scenario involves complex constraints on cooking for
a particular dinner guest, such as availability, food allergies, dietary rules, and
religious food preferences. Thus, shopping tips and shared cooking experiences
are most welcome and SharedLife may grant limited access to the augmented
memory of friends and family members with cooking expertise.

5 Exploiting Memories

We focused in the previously described shopping scenario on a specific way of ex-
ploiting augmentedmemories.Depending on the user’s current context, the system
offered recommendations and reminders related to that context with the goal of
putting information about past experiences relevant for the current situation into
the user’s mind. For instance, if the user is inspecting some CD in a shop, the sys-
tem might come up with cheaper offers previously seen, or with recommendations
of similar CDs in this shop. In order to describe such processes we coined the notion
recomindation; a study with 20 subjects showed that a number of aspects of this
paradigm tend to be recognized not only as appropriate and effective in supporting
the user’s shopping experience, but also as enjoyable (cf. [20]).

5.1 Reflection and Introspection

A crucial factor for the quality of such support is information about the relevance
of the numerous events recorded over time for a given situation. The relevance
is determined by several factors, and one of them is explicit or implicit user
feedback. Feedback is represented by ratings, which may be attached to per-
sonal journal entries. We experimented with various rating dimensions including
evaluation (a general quality judgement of objects referenced by the entry), im-
portance (how important is the entry with respect to the user’s current goals),
and urgency (how urgent is the entry with respect to the user’s goals). Ratings
are assigned either explicitly by the user (cf. the left-hand side of Fig. 8) or
implicitly based on feedback from biosensors and domain-specific heuristics.

Ratings assigned by the system may differ from the user’s perception, e.g.,
due to noise within the sensor data or inappropriate heuristics. Furthermore,
especially in the case of an “untrained” system, the mapping of situations to
services might require an adaptation to the user’s personal needs as well. The
user may address such issues by performing an introspection of her augmented
memories.

We think of introspection as “...a process of inward attention or reflection, so
as to examine the contents of the mind...” (cf. [22]). In the case of our approach
to augmented personal memories, introspection consists of processes in which the
user and/or the system explore the long-term memory in order to learn about
the course of events. From the user’s point of view this includes the option
to explore and to rate journal entries, including those produced in response to
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Fig. 6. Views on augmented memories: events, functions, and objects (from the left to
the right)

system actions. From the system’s point of view introspection is an opportunity
to refine, collaboratively with the user, the user model.

Feedback from our test user group indicated that an introspection should be
possible in a mobile setting (in order to make use of spare time, e.g., during a
train ride) as well as in a desktop setting. This is reflected in Specter’s user
interface to augmented memories, which consists of two major components.

On a mobile device, a journal browser lets the user explore and evaluate
memories. It provides the user with diverse views on her augmented memories.
Fig. 6 illustrates three of these views:

– Events: For each event, this view provides information about its context
(e.g., location and time), a summary of actions observed by Specter, and
ratings assigned by system and user. Additional filters may constrain the list
of shown events.

– Functions: This view lists services related to some object contained in the
augmented memory, which can be applied by the user in the current con-
text. Here, the user interface distinguishes environment- and memory-related
functions. In our example, the current location is the CD store “Bonnie’s”,
which allows the user to ask for similar CDs on sale (“Similar CDs at Bon-
nies”). Other functions such as a price comparison (“Known Prices”) make
use of the augmented memory in order to look up known instances of the
CD.

– Objects: At many opportunities an object-centered view is applied by the
system in order to focus specific sets of information from the memory, such
as the outcome of a retrieval process. This view presents a list of objects
(here: audio CDs), which can be exploited by the user in diverse ways, for
instance, to specify example-based queries to memory and environment.

These views are typically triggered by interactions between user and envi-
ronment. Complex interactions often involve several views; in our example, the
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user starts from an event referring the “Spider-Man 2” soundtrack and uses the
memory-related function “Similar CDs in Memory” in order to retrieve an object
list of similar CDs seen so far.

Other functions of the journal browser are not directly related to the memory,
but to the system configuration. These include top-level manipulation of system
services (e.g., switching off some support), bookmarking of views, and so-called
reminder points, which indicate the need for a close review of the current situation.

Such reflection and introspection can be performed on a regular desktop PC
using an introspection environment. It provides a rich user interface which en-
ables in combination with the planner already mentioned a collaborative intro-
spection of augmented memories (see [3] for a detailed description). If the user
is exploring the memory, then the system assists by offering event summaries
as well as details and links to the memory and the Web. The latter point to
external resources and services, and thus provide another means for retrieving
and adding information to the memory.

These activities usually require the user’s initiative. The system also proac-
tively checks the memory for situations where clarification might help to improve
the user model; examples of such situations are reminder points and user feedback
obtained during the execution of some supporting service. When such situations
are detected, the user is asked to enter the collaborative process described below.

5.2 Collaborative Critique of Situated User Support

If the user is not confident with the system’s suggestions, or wants to set up a new
service binding, there is a component explicitly designed for mapping situations
to services. This component is described in detail in [4]; at this point we will only
summarize its features and focus on its role within the introspection process.

The purpose of this component is to provide a scrutable and easy-to-use in-
terface that allows the user to interact with complex machine-learning processes
without the need to deal with the technical subtleties of feature selection or data
encoding. The key to our approach is to combine the system’s capability to deal
with the statistical relevance of a situation’s features with the user’s ability to
name semantically meaningful concepts that can and should be used to describe
the characteristics of a situation.

The result of our ongoing effort is a user interface which provides several
interaction layers of varying complexity for combining services and situations.
Especially relevant for a critique of a situation’s features (and thus for configuring
the execution of linked services) is the screen shown on the left-hand side of
Fig. 7. This shows a list of features, which have been extracted using statistical
methods from the memory, as it is presented to the user.

The user may critique this set by deselecting features, or by navigating in
their semantic neighborhood using a graphical interface to the underlying on-
tology. In our example scenario, the user might want to inform the system that
recommendations should only be retrieved in certain kinds of shops. A way to
achieve this goal is to inspect the list of features and then to refine the shop’s
features, e.g., by replacing the general shop by a more specific branch.
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Fig. 7. A user interface for critiquing situational features (left-hand side) and inspecting
decision trees generated from these features (right-hand side)

The system applies the adjusted feature set for computing a decision tree. It
becomes connected to the short-term memory; from now on it is used to classify
the system’s observations and thus to decide if the service chosen by the user
should be triggered. In order to make this mechanism transparent to the user, the
decision tree can be inspected by means of the graphical user interface shown on
the right-hand side of Fig. 7. This interface provides various ways of navigating
the decision tree, and offers additional information about the relevance of the
selected nodes based on the number of positive and negative examples taken
from the personal journal.

6 Selective Memory Sharing

So far we focused on personal use of augmented memories. However, there is often
the need to communicate personal memories with the environment: for instance,
the user may select items from the memory and provide these as examples to
the environment in order to personalize services offered there. Of course, these
applications may exploit such data for building their own model of the user.

This way of sharing personal augmented memories matches the idea of ubiq-
uitous user modeling, which can be described as “...ongoing modeling and ex-
ploitation of user behavior with a variety of systems that share their user mod-
els...” (see [10]). In the following, we will illustrate how by means of a platform
for ubiquitous user modeling, namely U2M (cf. www.u2m.org), such sharing
mechanisms can be realized.

Within U2M, the concept of sharing is split up into exchanging and inte-
grating statements about users. The former is realized by a user model server
that provides a service-based architecture for distributed storage and retrieval of
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Fig. 8. Selective memory sharing with privacy constraints

statements about users. The integration of statements is achieved with the accre-
tion model according to [14] together with a multilevel conflict resolution method
described in [10], which also solves the problem of contradictory information.

What statements can be retrieved and how they are integrated depends on
several layers of metadata attached to the statements by means of reification.
From the outermost to the innermost layer, these are: administration,privacy,
explanation, and situation. They establish a sequence of access constraints
which have to be met in order to obtain the reified statement. The privacy layer
in this sequence is of special interest. It implements the following privacy at-
tributes: key, owner, access, purpose, and retention. The user model server
checks these attributes in order to deliver as much information as possible with-
out violating the user’s preferences. Combined with the other layers, complex
situational access constraints can be established, such as “friends only & at my
home & for personal purposes”.

Fig. 8 depicts how this technology allows for sharing information extracted
from an augmented personal memory. In our example, the user evaluated the
CD “Shrek 2” very positively (two thumbs up, left-hand side of Fig. 8). Since
no specific situational context is provided for this evaluation, the ratings for im-
portance and urgency have been set by the system to a neutral default value.
A context menu allows the user to initiate a sharing process at any time for
lists of objects – here: audio CDs – retrieved from the augmented memory.
The middle of Fig. 8 shows that the user has selected a list including the CD
“Shrek 2”. The user may specify privacy-related preferences (here: about access,
purpose, and retention) explicitly for the current sharing process (right-hand
side of Fig. 8) or rely on U2M’s default reasoning which derives privacy prefer-
ences from personal defaults set in the ubiquitous user model. Once submitted,
U2M makes the data accessible to other users with respect to the user’s privacy
preferences.
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7 Conclusions

One of the grand challenges of current AI research is to create instrumented
environments and to capture the physical and communicative interaction of an
individual with these environments, to process this multimodal and massive data
stream, to recognize, classify, and represent its digital content in a context-
sensitive way, and finally to integrate behavior understanding with reasoning
and learning about the individual’s day by day experiences.

We presented our SharedLife project, in which we are creating augmented
episodic memories that are personal and sharable. We described the experi-
mental DFKI Cybershopping mall, which supports mixed-reality shopping and
which augments the usual physical shopping experience with personalized virtual
shopping assistance known from some online shops. Our research is aimed at ex-
ploiting the networked infrastructure for more personalized shopping assistance
like digital shopping list support, automatic comparison shopping, cross- and
up-selling, proactive product information, and in-shop navigation. In the tech-
nical core of the paper, we described in detail the abstraction pipeline and the
first implementation of the memory sharing mechanism of SharedLife, which
is based on a ubiquitous user modeling server.

Our future work on SharedLife will address the question of how the sharing
of augmented memories can contribute to the communication within small, po-
tentially ad-hoc formed groups. We want to provide mechanisms for automated
and semi-automated memory sharing. Such mechanisms must not only take into
account situated access constraints on privacy and trust (e.g., in order to dis-
tinguish between situations of everyday life and emergency cases), but also the
structure of the group (e.g., to define experts or opinion leaders).
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